Skip to main content
Mathematics LibreTexts

5.3.1: Exercises 5.3

  • Page ID
    71116
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In Exercises \(\PageIndex{1}\) – \(\PageIndex{4}\), vectors \(\vec{x}\) and \(\vec{y}\) are given. Sketch \(\vec{x}\), \(\vec{y}\), \(\vec{x}+\vec{y}\), and \(\vec{x}-\vec{y}\) on the same Cartesian axes.

    Exercise \(\PageIndex{1}\)

    \(\vec{x}=\left[\begin{array}{c}{1}\\{-1}\\{2}\end{array}\right],\:\vec{y}=\left[\begin{array}{c}{2}\\{3}\\{2}\end{array}\right]\)

    Answer

    \(\vec{x}+\vec{y}=\left[\begin{array}{c}{3}\\{2}\\{4}\end{array}\right],\:\vec{x}-\vec{y}=\left[\begin{array}{c}{-1}\\{-4}\\{0}\end{array}\right]\)

    Sketches will vary slightly depending on orientation.

    clipboard_efebe63539871aaf98d49f0e94b585d02.png

    Exercise \(\PageIndex{2}\)

    \(\vec{x}=\left[\begin{array}{c}{2}\\{4}\\{-1}\end{array}\right],\:\vec{y}=\left[\begin{array}{c}{-1}\\{-3}\\{-1}\end{array}\right]\)

    Answer

    \(\vec{x}+\vec{y}=\left[\begin{array}{c}{1}\\{1}\\{-2}\end{array}\right],\:\vec{x}-\vec{y}=\left[\begin{array}{c}{3}\\{7}\\{0}\end{array}\right]\)

    Sketches will vary slightly depending on orientation.

    clipboard_e49bfdcb2cdf563fce7a6726a5e827a37.png

    Exercise \(\PageIndex{3}\)

    \(\vec{x}=\left[\begin{array}{c}{1}\\{1}\\{2}\end{array}\right],\:\vec{y}=\left[\begin{array}{c}{3}\\{3}\\{6}\end{array}\right]\)

    Answer

    \(\vec{x}+\vec{y}=\left[\begin{array}{c}{4}\\{4}\\{8}\end{array}\right],\:\vec{x}-\vec{y}=\left[\begin{array}{c}{-2}\\{-2}\\{-4}\end{array}\right]\)

    Sketches will vary slightly depending on orientation.

    clipboard_e779d4589a35f4316924d5a02c6b66f1d.png

    Exercise \(\PageIndex{4}\)

    \(\vec{x}=\left[\begin{array}{c}{0}\\{1}\\{1}\end{array}\right],\:\vec{y}=\left[\begin{array}{c}{0}\\{-1}\\{1}\end{array}\right]\)

    Answer

    \(\vec{x}+\vec{y}=\left[\begin{array}{c}{0}\\{0}\\{2}\end{array}\right],\:\vec{x}-\vec{y}=\left[\begin{array}{c}{0}\\{2}\\{0}\end{array}\right]\)

    Sketches may vary slightly.

    clipboard_ea67d351f37d44bc7e925b992703b86fa.png

    In Exercises \(\PageIndex{5}\) - \(\PageIndex{8}\), vectors \(\vec{x}\) and \(\vec{y}\) are drawn. Sketch \(2\vec{x}\), \(-\vec{y}\), \(\vec{x}+\vec{y}\), and \(\vec{x}-\vec{y}\) on the same Cartesian axes.

    Exercise \(\PageIndex{5}\)

    clipboard_e0e4a8a1893fd49951e7da46cb94e11f4.png

    Answer

    Sketches may vary slightly.

    clipboard_efa79a08d2158bbde48be54acf10988bc.png

    Exercise \(\PageIndex{6}\)

    clipboard_e7f39b8b79723f5ae5bef0d45f7e40c50.png

    Answer

    Sketches may vary slightly.

    clipboard_eb94719cae9ad39ce67c10de08d86dab6.png

    Exercise \(\PageIndex{7}\)

    clipboard_eb68625311a3f29ff2eda8177ca7ad091.png

    Answer

    Sketches may vary slightly.

    clipboard_e07a3fcd612e33589067c4a347f8ea952.png

    Exercise \(\PageIndex{8}\)

    clipboard_e60a8499a8f311fc8a3ed9db72cc1acf1.png

    Answer

    Sketches may vary slightly.

    clipboard_e9c03932841e2fec8a42c08a09e98b7d7.png

    In Exercises \(\PageIndex{9}\) - \(\PageIndex{12}\), a vector \(\vec{x}\) and a scalar \(a\) are given. Using Definition 3D Vector Length, compute the lengths of \(\vec{x}\) and \(a\vec{x}\), then compare these lengths.

    Exercise \(\PageIndex{9}\)

    \(\vec{x}=\left[\begin{array}{c}{1}\\{-2}\\{5}\end{array}\right],\: a=2\)

    Answer

    \(||\vec{x}||=\sqrt{30}\), \(||a\vec{x}||=\sqrt{120}=2\sqrt{30}\)

    Exercise \(\PageIndex{10}\)

    \(\vec{x}=\left[\begin{array}{c}{-3}\\{4}\\{3}\end{array}\right],\: a=-1\)

    Answer

    \(||\vec{x}||=\sqrt{34}\), \(||a\vec{x}||=\sqrt{34}\)

    Exercise \(\PageIndex{11}\)

    \(\vec{x}=\left[\begin{array}{c}{7}\\{2}\\{1}\end{array}\right],\: a=5\)

    Answer

    \(||\vec{x}||=\sqrt{54}=3\sqrt{6}\), \(||a\vec{x}||=\sqrt{270}=15\sqrt{6}\)

    Exercise \(\PageIndex{12}\)

    \(\vec{x}=\left[\begin{array}{c}{1}\\{2}\\{-2}\end{array}\right],\: a=3\)

    Answer

    \(||\vec{x}||=\sqrt{3}\), \(||a\vec{x}||=\sqrt{27}\)


    This page titled 5.3.1: Exercises 5.3 is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gregory Hartman et al..

    • Was this article helpful?