Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

1.2: The absolute value

( \newcommand{\kernel}{\mathrm{null}\,}\)

The absolute value of a real number c, denoted by |c| the non-negative number which is equal in magnitude (or size) to c, i.e., is the number resulting from disregarding the sign:

|c|={c, if c is positive or zero c, if c is negative 

Example 1.2.1

|4|=4

Example 1.2.2

|12|=12

Example 1.2.3

|3.523|=3.523

Example 1.2.4

For which real numbers x do you have |x|=3?

Solution

Since |3|=3 and |3|=3, we see that there are two solutions, x=3 or x=3.

The solution set is S={3,3}.

Example 1.2.5

|x|=5] Solve for x: |x|=5

Solution

x=5 or x=5. The solution set is S={5,5}.

Example 1.2.6

|x|=-7] Solve for x: |x|=7.

Solution

Note that |7|=7 and |7|=7 so that these cannot give any solutions. Indeed, there are no solutions, since the absolute value is always non-negative. The solution set is the empty set S={}.

Example 1.2.7

Solve for x: |x|=0.

Solution

Since 0=0, there is only one solution, x=0. Thus, S={0}.

Example 1.2.8

Solve for x: |x+2|=6.

Solution

Since the absolute value of x+2 is 6, we see that x+2 has to be either 6 or 6.

We evaluate each case,

 either x+2=6, or x+2=6x=62,x=62x=4,x=8

The solution set is S={8,4}.

Example 1.2.9

Solve for x: |3x4|=5

Solution

 Either 3x4=5 or 3x4=53x=93x=1x=3x=13

The solution set is S={13,3}.

Example 1.2.10

Solve for x: 2|12+3x|=18

Solution

Dividing both sides by 2 gives |12+3x|=9. With this, we have the two cases

 Either 12+3x=9 or 12+3x=93x=33x=21x=1x=7

The solution set is S={7,1}.


This page titled 1.2: The absolute value is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?