1.5: Exercises
- Page ID
- 48951
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Give examples of numbers that are
- natural numbers
- integers
- integers but not natural numbers
- rational numbers
- real numbers
- rational numbers but not integers
- Answer
-
- \(2, 3, 5\)
- \(−3, 0, 6\)
- \(−3, −4, 0\)
- \(\dfrac{2}{3}, \dfrac{-4}{7}, 8\)
- \(\sqrt{5}, \pi, \sqrt[3]{31}\)
- \(\dfrac{1}{2}, \dfrac{2}{5}, 0.75\)
Which of the following numbers are natural numbers, integers, rational numbers, or real numbers? Which of these numbers are irrational?
- \(\dfrac 7 3\)
- \(-5\)
- \(0\)
- \(17,000\)
- \(\dfrac{12}{4}\)
- \(\sqrt{7}\)
- \(\sqrt{25}\)
- Answer
-
- rational
- integer, rational
- integer, rational
- natural, integer, rational
- natural, integer, rational
- irrational
- natural, integer, rational
All of the given numbers are real numbers
Evaluate the following absolute value expressions:
- \(|-8|\)
- \(|10|\)
- \(|-99|\)
- \(-|3|\)
- \(-|-2|\)
- \(|-\sqrt{6}|\)
- \(|3+4|\)
- \(|2-9|\)
- \(|-5.4|\)
- \(\left|-\dfrac{2}{3}\right|\)
- \(\left|\dfrac{5}{-2}\right|\)
- \(-\left|-\dfrac{-6}{-3}\right|\)
- Answer
-
- \(8\)
- \(10\)
- \(99\)
- \(-3\)
- \(-2\)
- \(\sqrt{6}\)
- \(7\)
- \(7\)
- \(5.4\)
- \(\dfrac{2}{3}\)
- \(\dfrac{5}{2}\)
- \(-2\)
Solve for \(x\):
- \(|x|=8\)
- \(|x|=0\)
- \(|x|=-3\)
- \(|x+3|=10\)
- \(|2x+5|=9\)
- \(|2-5x|=22\)
- \(|4x|=-8\)
- \(|-7x-3|=0\)
- \(|4-4x|=44\)
- \(-2\cdot |2-3x|=-12\)
- \(5+|2x+7|=14\)
- \(-|-8-2x|=-12\)
- Answer
-
- \(S=\{-8,8\}\)
- \(S=\{0\}\)
- \(S=\{\}\)
- \(S=\{-13,7\}\)
- \(S=\{-7,2\}\)
- \(S=\left\{-4, \dfrac{24}{5}\right\}\)
- \(S=\{\}\)
- \(S=\left\{\dfrac{-3}{7}\right\}\)
- \(S=\{-10,12\}\)
- \(S=\left\{\dfrac{-4}{3}, \dfrac{8}{3}\right\}\)
- \(S=\{-8,1\}\)
- \(S=\{-10,2\}\)
Solve for \(x\) using the geometric interpretation of the absolute value:
- \(|x|=8\)
- \(|x|=0\)
- \(|x|=-3\)
- \(|x-4|=2\)
- \(|x+5|=9\)
- \(|2-x|=5\)
- Answer
-
- \(S=\{-8,8\}\)
- \(S=\{0\}\)
- \(S=\{\}\)
- \(S=\{2,6\}\)
- \(S=\{-14,4\}\)
- \(S=\{-3,7\}\)
Complete the table.
Inequality notation | Number line | Interval notation |
---|---|---|
\(2\leq x< 5\) | ||
\(x\leq 3\) | ||
\([-2,6]\) | ||
\((-\infty,0)\) | ||
\(5< x\leq \sqrt{30}\) | ||
\(\left(\dfrac{13}{7},\pi \right )\) |
- Answer
-
Inequality notation Number line Interval notation \(2\leq x< 5\) \([2,5)\) \(x\leq 3\) \((-\infty, 3]\) \(12<x \leq 17\) \((12,17]\) \(x< -2\) \((-\infty,-2)\) \(-2 \leq x \leq 6\) \([-2,6]\) \(x< 0\) \((-\infty,0)\) \(4.5 \leq x\) \([4.5, \infty)\) \(5< x\leq \sqrt{30}\) \((5, \sqrt{30}]\) \(\dfrac{13}{7}<x<\pi\) \(\left(\dfrac{13}{7},\pi \right )\)
Solve for \(x\) and write the solution in interval notation.
- \(|x-4|\leq 7\)
- \(|x-4|\geq 7\)
- \(|x-4|> 7\)
- \(|2x+7|\leq 13\)
- \(|-2-4x|>8\)
- \(|4x+2|<17\)
- \(|15-3x|\geq 6\)
- \(\left|5x-\dfrac 4 3 \right|>\dfrac 2 3\)
- \(\left| \sqrt{2}x-\sqrt{2}\right|\leq \sqrt{8}\)
- \(|2x+3|<-5\)
- \(|5+5x|\geq -2\)
- \(|5+5x|> 0\)
- Answer
-
- \(S=[-3,11]\)
- \(S=(-\infty,-3] \cup[11, \infty)\)
- \(S=(-\infty,-3) \cup(11, \infty)\)
- \(S=[-10,3],\)
- \(S=\left(-\infty,-\dfrac{5}{2}\right) \cup\left(\dfrac{3}{2}, \infty\right)\)
- \(S=\left(\dfrac{-19}{4}, \dfrac{15}{4}\right)\)
- \(S=(-\infty, 3] \cup[7, \infty)\)
- \(S=\left(-\infty, \dfrac{2}{15}\right) \cup\left(\dfrac{2}{5}, \infty\right)\)
- \(S=[-1,3]\)
- \(S=\{\}\)
- \(S=(-\infty, \infty)=\mathbb{R}\)
- \(S=(-\infty,-1) \cup(-1, \infty)=\mathbb{R}-\{-1\}\)