12.3: Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
Solve for x.
- 5x+6≤21
- 3+4x>10x
- 2x+8≥6x+24
- 9−3x<2x−13
- −5≤2x+5≤19
- 15>7−2x≥1
- 3x+4≤6x−2≤8x+5
- 5x+2<4x−18≤7x+11
- Answer
-
- x≤3
- 12>x
- −4≥x
- x>225
- −5≤x≤7
- −4<x≤3
- x≥2 (this then also implies x≥−72)
- no solution
Solve for x.
- x2−5x−14>0
- x2−2x≥35
- x2−4≤0
- x2+3x−3<0
- 2x2+2x≤12
- 3x2<2x+1
- x2−4x+4>0
- x3−2x2−5x+6≥0
- x3+4x2+3x+12<0
- −x3−4x<−4x2
- x4−10x2+9≤0
- x4−5x3+5x2+5x<6
- x4−5x3+6x2>0
- x5−6x4+x3+24x2−20x≤0
- x5−15x4+85x3−225x2+274x−120≥0
- x11−x10+x−1≤0
- Answer
-
- (−∞,−2)∪(7,∞)
- (−∞,−5]∪[7,∞)
- [−2,2]
- (−3−√212,−3+√212)
- [−3,2]
- (−13,1)
- R−{2}
- [−2,1]∪[3,∞)
- (−∞,−4)
- (0,2)∪(2,∞)
- [−3,−1]∪[1,3]
- (−1,1)∪(2,3)
- (−∞,0)∪(0,2)∪(3,∞)
- (−∞,−2]∪[0,1]∪[2,5]
- [1,2]∪[3,4]∪[5,∞)
- (−∞,1]
Find the domain of the functions below.
- f(x)=√x2−8x+15
- f(x)=√9x−x3
- f(x)=√(x−1)(4−x)
- f(x)=√(x−2)(x−5)(x−6)
- f(x)=5√6−2x
- f(x)=1√x2−6x−7
- Answer
-
- D=(−∞,3]∪[5,∞)
- D=(−∞,−3]∪[0,3]
- D=[1,4]
- D=[2,5]∪[6,∞)
- D=(−∞,3)
- D=(−∞,−1)∪(7,∞)
Solve for x.
- x−52−x>0
- 4x−4x2−4≥0
- x−2x2−4x−5<0
- x2−9x2−4≥0
- x−3x+3≤4
- 1x+10>5
- 2x−2≤5x+1
- x2x+4≤x
- Answer
-
- (2,5)
- (−2,1]∪(2,∞)
- (−∞,−1)∪(2,5)
- (−∞,−3]∪(−2,2)∪[3,∞)
- (−∞,−5]∪(−3,∞)
- (−10,−9.8)
- (−1,2)∪[4,∞)
- (−∞,−4)∪[0,∞)
Solve for x.
- |2x+7|>9
- |6x+2|<3
- |5−3x|≥4
- |−x−7|≤5
- |1−8x|≥3
- 1>|2+x5|
- Answer
-
- (−∞,−8)∪(1,∞)
- (−56,16)
- (−∞,13]∪[3,∞)
- [−12,−2]
- (−∞,−14]∪[12,∞)
- (−15,−5)