Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

12.3: Exercises

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise 12.3.1

Solve for x.

  1. 5x+621
  2. 3+4x>10x
  3. 2x+86x+24
  4. 93x<2x13
  5. 52x+519
  6. 15>72x1
  7. 3x+46x28x+5
  8. 5x+2<4x187x+11
Answer
  1. x3
  2. 12>x
  3. 4x
  4. x>225
  5. 5x7
  6. 4<x3
  7. x2 (this then also implies x72)
  8. no solution

Exercise 12.3.2

Solve for x.

  1. x25x14>0
  2. x22x35
  3. x240
  4. x2+3x3<0
  5. 2x2+2x12
  6. 3x2<2x+1
  7. x24x+4>0
  8. x32x25x+60
  9. x3+4x2+3x+12<0
  10. x34x<4x2
  11. x410x2+90
  12. x45x3+5x2+5x<6
  13. x45x3+6x2>0
  14. x56x4+x3+24x220x0
  15. x515x4+85x3225x2+274x1200
  16. x11x10+x10
Answer
  1. (,2)(7,)
  2. (,5][7,)
  3. [2,2]
  4. (3212,3+212)
  5. [3,2]
  6. (13,1)
  7. R{2}
  8. [2,1][3,)
  9. (,4)
  10. (0,2)(2,)
  11. [3,1][1,3]
  12. (1,1)(2,3)
  13. (,0)(0,2)(3,)
  14. (,2][0,1][2,5]
  15. [1,2][3,4][5,)
  16. (,1]

Exercise 12.3.3

Find the domain of the functions below.

  1. f(x)=x28x+15
  2. f(x)=9xx3
  3. f(x)=(x1)(4x)
  4. f(x)=(x2)(x5)(x6)
  5. f(x)=562x
  6. f(x)=1x26x7
Answer
  1. D=(,3][5,)
  2. D=(,3][0,3]
  3. D=[1,4]
  4. D=[2,5][6,)
  5. D=(,3)
  6. D=(,1)(7,)

Exercise 12.3.4

Solve for x.

  1. x52x>0
  2. 4x4x240
  3. x2x24x5<0
  4. x29x240
  5. x3x+34
  6. 1x+10>5
  7. 2x25x+1
  8. x2x+4x
Answer
  1. (2,5)
  2. (2,1](2,)
  3. (,1)(2,5)
  4. (,3](2,2)[3,)
  5. (,5](3,)
  6. (10,9.8)
  7. (1,2)[4,)
  8. (,4)[0,)

Exercise 12.3.5

Solve for x.

  1. |2x+7|>9
  2. |6x+2|<3
  3. |53x|4
  4. |x7|5
  5. |18x|3
  6. 1>|2+x5|
Answer
  1. (,8)(1,)
  2. (56,16)
  3. (,13][3,)
  4. [12,2]
  5. (,14][12,)
  6. (15,5)

This page titled 12.3: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?