Skip to main content
Mathematics LibreTexts

17.3: Exercises

  • Page ID
    49061
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Exercise \(\PageIndex{1}\)

    Find \(\sin(x)\), \(\cos(x)\), and \(\tan(x)\) for the following angles.

    1. \(x=120^\circ\)
    2. \(x=390^\circ\)
    3. \(x=-150^\circ\)
    4. \(x=-45^\circ\)
    5. \(x=1050^\circ\)
    6. \(x=-810^\circ\)
    7. \(x=\dfrac{5\pi}{4}\)
    8. \(x=\dfrac{5\pi}{6}\)
    9. \(x=\dfrac{10\pi}{3}\)
    10. \(x=\dfrac{15\pi}{2}\)
    11. \(x=\dfrac{-\pi}{6}\)
    12. \(x=\dfrac{-54\pi}{8}\)
    Answer
    1. \(\sin \left(120^{\circ}\right)=\dfrac{\sqrt{3}}{2}, \cos \left(120^{\circ}\right)=-\dfrac{1}{2}, \tan \left(120^{\circ}\right)=-\sqrt{3}\)
    2. \(\sin \left(390^{\circ}\right)=\dfrac{1}{2}, \cos \left(390^{\circ}\right)=\dfrac{\sqrt{3}}{2}, \tan \left(390^{\circ}\right)=\dfrac{\sqrt{3}}{3}\)
    3. \(\sin \left(-150^{\circ}\right)=-\dfrac{1}{2}, \cos \left(-150^{\circ}\right)=-\dfrac{\sqrt{3}}{2}, \tan \left(-150^{\circ}\right)=\dfrac{\sqrt{3}}{3}\)
    4. \(\sin \left(-45^{\circ}\right)=-\dfrac{\sqrt{2}}{2}, \cos \left(-45^{\circ}\right)=\dfrac{\sqrt{2}}{2}, \tan \left(-45^{\circ}\right)=-1\)
    5. \(\sin \left(1050^{\circ}\right)=-\dfrac{1}{2}, \cos \left(1050^{\circ}\right)=\dfrac{\sqrt{3}}{2}, \tan \left(1050^{\circ}\right)=-\dfrac{\sqrt{3}}{3}\)
    6. \(\sin \left(-810^{\circ}\right)=-1, \cos \left(-810^{\circ}\right)=0, \tan \left(-810^{\circ}\right)\) is undefined
    7. \(\sin \left(\dfrac{5 \pi}{4}\right)=-\dfrac{\sqrt{2}}{2}, \cos \left(\dfrac{5 \pi}{4}\right)=-\dfrac{\sqrt{2}}{2}, \tan \left(\dfrac{5 \pi}{4}\right)=1\)
    8. \(\sin \left(\dfrac{5 \pi}{6}\right)=\dfrac{1}{2}, \cos \left(\dfrac{5 \pi}{6}\right)=-\dfrac{\sqrt{3}}{2}, \tan \left(\dfrac{5 \pi}{6}\right)=-\dfrac{\sqrt{3}}{3}\)
    9. \(\sin \left(\dfrac{10 \pi}{3}\right)=-\dfrac{\sqrt{3}}{2}, \cos \left(\dfrac{10 \pi}{3}\right)=-\dfrac{1}{2}, \tan \left(\dfrac{10 \pi}{3}\right)=\sqrt{3}\)
    10. \(\sin \left(\dfrac{15 \pi}{2}\right)=-1, \cos \left(\dfrac{15 \pi}{2}\right)=0, \tan \left(\dfrac{15 \pi}{2}\right)\) is undefined
    11. \(\sin \left(\dfrac{-\pi}{6}\right)=-\dfrac{1}{2}, \cos \left(\dfrac{-\pi}{6}\right)=\dfrac{\sqrt{3}}{2}, \tan \left(\dfrac{-\pi}{6}\right)=-\dfrac{\sqrt{3}}{3}\)
    12. \(\sin \left(\dfrac{-54 \pi}{8}\right)=-\dfrac{\sqrt{2}}{2}, \cos \left(\dfrac{-54 \pi}{8}\right)=-\dfrac{\sqrt{2}}{2}, \tan \left(\dfrac{-54 \pi}{8}\right)=1\)

    Exercise \(\PageIndex{2}\)

    Graph the function, and describe how the graph can be obtained from one of the basic graphs \(y=\sin(x)\), \(y=\cos(x)\), or \(y=\tan(x)\).

    1. \(f(x)=\sin(x)+2\)
    2. \(f(x)=\cos(x-\pi)\)
    3. \(f(x)=\tan(x)-4\)
    4. \(f(x)=5\cdot \sin(x)\)
    5. \(f(x)=\cos(2\cdot x)\)
    6. \(f(x)=\sin(x-2)-5\)
    Answer
    1. shift \(y = \sin(x)\) up by \(2\) clipboard_e87a9fec74db13512dc88d00c5a408b50.png
    2. \(y = \cos(x)\) shifted to the right by \(\pi\) clipboard_ea49e58b7b0e659038bf9635b9ba96f8e.png
    3. \(y = \tan(x)\) shifted down by \(4\) clipboard_e4568fbe75b058d26e053e360fb41df95.png
    4. \(y = \sin(x)\) stretched away from the \(x\)-axis by a factor \(5\) clipboard_ea70bf9f705034f50ed58be4f251a6281.png
    5. \(y = \cos(x)\) compressed towards the \(y\)-axis by a factor \(2\) clipboard_e080744b55078ea167a3afba862c78862.png
    6. \(y = \sin(x)\) shifted to the right by \(2\) and down by \(5\) clipboard_e7b1355ee1b59ad066326d55ba2459d2a.png

    Exercise \(\PageIndex{3}\)

    Identify the formulas with the graphs. \[\begin{array}{lll}
    f(x)=\sin (x)+2, & g(x)=\tan (x-1), & h(x)=3 \sin (x), \\
    i(x)=3 \cos (x), & j(x)=\cos (x-\pi), & k(x)=\tan (x)-1
    \end{array} \nonumber \]

    1. clipboard_ed9f7f6deab20c9a085dbd10a02f684dd.png
    2. clipboard_e020683b23064247032aac69fc1c7a107.png
    3. clipboard_e5469166b94ce909f729ca288a1aed298.png
    4. clipboard_e06decdf4a038417807f651176e3dd831.png
    5. clipboard_e51f2385d56e4e68d886ca212744a7316.png
    6. clipboard_ecf741760cde398a86b7a8ec8776b2587.png
    Answer
    1. \(g(x)\)
    2. \(h(x)\)
    3. \(j(x)\)
    4. \(k(x)\)
    5. \(i(x)\)
    6. \(f(x)\)

    Exercise \(\PageIndex{4}\)

    Find the formula of a function whose graph is the one displayed below.

    1. clipboard_ea430c8007e6555ae5fafacf64920c0b9.png
    2. clipboard_eef7dfc0304d8751afc660afd06d91a26.png
    3. clipboard_e3cdb414f98f2d1e143a135131b7718ba.png
    4. clipboard_ea748c6feb830be4ec4d0323292225119.png
    5. clipboard_ec442cb9f2d0e69954a33c055884fafe1.png
    6. clipboard_ecf5d99db8f8e0d021c4d07ffcfef9c6e.png
    Answer
    1. \(y = 5 \cos(x)\)
    2. \(y = −5 \cos(x)\)
    3. \(y = −5 \sin(x)\)
    4. \(y = \cos(x) + 5\)
    5. \(y = \sin(x) + 5\)
    6. \(y = 2 \sin(x) + 3\)

    Exercise \(\PageIndex{5}\)

    Find the amplitude, period, and phase-shift of the function.

    1. \(f(x)=5\sin(2x+3)\)
    2. \(f(x)=\sin(\pi x-5)\)
    3. \(f(x)=6\sin(4x)\)
    4. \(f(x)=-2\cos\left(x+\dfrac{\pi}{4}\right)\)
    5. \(f(x)=8\cos(2x-6)\)
    6. \(f(x)=3\sin\left(\dfrac{x}{4}\right)\)
    7. \(f(x)=-\cos(x+2)\)
    8. \(f(x)=7\sin \left(\dfrac{2\pi}{5}x-\dfrac{6\pi}{5}\right)\)
    9. \(f(x)=\cos(-2x)\)
    Answer
    1. amplitude \(5\), period \(\pi\), phase-shift \(\dfrac{−3}{2}\)
    2. amplitude \(1\), period \(2\), phase-shift \(\dfrac 5 \pi\)
    3. amplitude \(6\), period \(\dfrac \pi 2\), phase-shift \(0\)
    4. amplitude \(2\), period \(\dfrac 2 \pi\), phase-shift \(\dfrac{−\pi}{4}\)
    5. amplitude \(8\), period \(\pi\), phase-shift \(3\)
    6. amplitude \(3\), period \(\dfrac 8 \pi\), phase-shift \(0\)
    7. amplitude \(1\), period \(\dfrac 2 \pi\), phase-shift \(−2\)
    8. amplitude \(7\), period \(5\), phase-shift \(3\)
    9. amplitude \(1\), period \(\pi\), phase-shift \(0\)

    Exercise \(\PageIndex{6}\)

    Find the amplitude, period, and phase-shift of the function. Use this information to graph the function over a full period. Label all maxima, minima, and zeros of the function.

    1. \(y=5\cos(2x)\)
    2. \(y=4\sin(\pi x)\)
    3. \(y=2\sin\left(\dfrac{2\pi}{3}x\right)\)
    4. \(y=\cos(2x-\pi)\)
    5. \(y=\cos(\pi x-\pi)\)
    6. \(y=-6\cos(-\dfrac{x}{4})\)
    7. \(y=-\cos(4x+\pi)\)
    8. \(y=7\sin\left(x+\dfrac{\pi}{4}\right)\)
    9. \(y=5\cos\left(x+\dfrac{3\pi}{2}\right)\)
    10. \(y=4\sin(5x-\pi)\)
    11. \(y=-3\cos(2\pi x-4)\)
    12. \(y=7\sin\left(\dfrac 1 4 x+\dfrac{\pi}{4}\right)\)
    13. \(y=\cos(3x-4\pi)\)
    14. \(y=2\sin\big(\dfrac 1 5 x-\dfrac{\pi}{10}\big)\)
    15. \(y=\dfrac 1 3 \cos\left(\dfrac{14}{5}x-\dfrac{6\pi}{5}\right)\)
    Answer
    1. amplitude \(5\), period \(\pi\), phase-shift \(0\) clipboard_e113627ff02d07cc9bea67038b4d8a974.png
    2. amplitude \(4\), period \(2\), phase-shift \(0\) clipboard_edef39b269c155473be986ec93e2577c2.png
    3. amplitude \(2\), period \(3\), phase-shift \(0\) clipboard_e6ab47a8cab9e849a888344707a04ecda.png
    4. amplitude \(1\), period \(\pi\), phase-shift \(\dfrac \pi 2\) clipboard_e64231c2bd27d118a37761a9bddfafb9d.png
    5. amplitude \(1\), period \(2\), phase-shift \(1\) clipboard_e7ec6ef7ac4ef9917dd623cbfe2a5ef3d.png
    6. amplitude \(6\), period \(\dfrac 8 \pi \), phase-shift \(0\) clipboard_ed1774e04d9474194870114a705c9b522.png
    7. amplitude \(1\), period \(\dfrac \pi 2\), phase-shift \(\dfrac {−\pi}{4}\) clipboard_e3eb28effa7317eab90f2b0de9a48367d.png
    8. amplitude \(7\), period \(\dfrac 2 \pi\), phase-shift \(\dfrac {−\pi}{4}\) clipboard_ec0268bfd6521121da67ce54e9eba246b.png
    9. amplitude \(5\), period \(\dfrac 2 \pi\), phase-shift \(\dfrac {−3\pi}{2}\) clipboard_e41db0af7dfe18c464fc5480985a46120.png
    10. amplitude \(4\), period \(\dfrac {2\pi}{5}\), phase-shift \(\dfrac \pi 5\) clipboard_e1fcc37d96d30151b0cf20a260141868c.png
    11. amplitude \(3\), period \(1\), phase-shift \(\dfrac 2 \pi\) clipboard_e6675a6425361cf8d163fd4982cde4056.png
    12. amplitude \(7\), period \(\dfrac 8 \pi\), phase-shift \(-\pi\) clipboard_ea018243cb0d56c545263af605094776f.png
    13. amplitude \(1\), period \(\dfrac {2\pi}{3}\), phase-shift \(\dfrac {4\pi}{3}\) clipboard_e47af696f68a6368c441fb4b5a6f6c833.png
    14. amplitude \(2\), period \(\dfrac 10 \pi\), phase-shift \(\dfrac \pi 2\) clipboard_e32bbf0c4182ae4dc97ce0163f8be391b.png
    15. amplitude \(\dfrac 1 3\), period \(\dfrac {5\pi}{7}\), phase-shift \(\dfrac {3\pi}{7}\) clipboard_ef80d92a6baf65f7530888a753667da1c.png

    This page titled 17.3: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.