Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

20.3: Exercises

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise 20.3.1

Find all solutions of the equation, and simplify as much as possible. Do not approximate the solution.

  1. tan(x)=33
  2. sin(x)=32
  3. sin(x)=22
  4. cos(x)=32
  5. cos(x)=0
  6. cos(x)=0.5
  7. cos(x)=1
  8. sin(x)=5
  9. sin(x)=0
  10. sin(x)=1
  11. tan(x)=3
  12. cos(x)=0.2
Answer
  1. x=π6+nπ, where n=0,±1,
  2. x=(1)nπ3+nπ, where n=0,±1,
  3. x=(1)n+1π4+nπ, where n=0,±1,
  4. x=±π6+2nπ, where n=0,±1,
  5. x=±π2+2nπ, where n=0,±1,
  6. x=±2π3+2nπ, where n=0,±1,
  7. x=2nπ, where n=0,±1,
  8. there is no solution (since 1sin(x)),
  9. x=nπ, where n=0,±1,
  10. x=(1)n+1π2+nπ, where n=0,±1, (since each solution appears twice, it is enough to take n=0,±2,±4,),
  11. x=π3+nπ, where n=0,±1,
  12. x=±cos1(0.2)+2nπ, where n=0,±1,

Exercise 20.3.2

Find all solutions of the equation. Approximate your solution with the calculator.

  1. tan(x)=6.2
  2. cos(x)=0.45
  3. sin(x)=0.91
  4. cos(x)=.772
  5. tan(x)=0.2
  6. sin(x)=0.06
Answer
  1. x1.411+nπ, where n=0,±1,
  2. x±1.104+2nπ, where n=0,±1,
  3. x(1)n1.143+nπ, where n=0,±1,
  4. x±2.453+2nπ, where n=0,±1,
  5. x0.197+nπ, where n=0,±1,
  6. x(1)n+10.06+nπ, where n=0,±1,

Exercise 20.3.3

Find at least 5 distinct solutions of the equation.

  1. tan(x)=1
  2. cos(x)=22
  3. sin(x)=32
  4. tan(x)=0
  5. cos(x)=0
  6. cos(x)=0.3
  7. sin(x)=0.4
  8. sin(x)=1
Answer
  1. π4,3π4,7π4,5π4,9π4
  2. π4,π4,9π4,9π4,17π4,17π4
  3. π3,4π3,5π3,2π3,7π3
  4. 0,π,2π,π,2π,
  5. π2,π2,3π2,3π2,5π2,5π2
  6. cos1(0.3),cos1(0.3),cos1(0.3)+2π,cos1(0.3)+2π,cos1(0.3)2π,cos1(0.3)2π
  7. sin1(0.4),sin1(0.4)+π,sin1(0.4)π,sin1(0.4)+2π,sin1(0.4)2π
  8. 3π2,7π2,11π2,π2,5π2

Exercise 20.3.4

Solve for x. State the general solution without approximation.

  1. tan(x)1=0
  2. 2sin(x)=1
  3. 2cos(x)3=0
  4. sec(x)=2
  5. cot(x)=3
  6. tan2(x)3=0
  7. sin2(x)1=0
  8. cos2(x)+7cos(x)+6=0
  9. 4cos2(x)4cos(x)+1=0
  10. 2sin2(x)+11sin(x)=5
  11. 2sin2(x)+sin(x)1=0
  12. 2cos2(x)3cos(x)+1=0
  13. 2cos2(x)+9cos(x)=5
  14. tan3(x)tan(x)=0
Answer
  1. x=π4+nπ, where n=0,±1,
  2. x=(1)nπ6+nπ, where n=0,±1,
  3. x=±π6+2nπ, where n=0,±1,
  4. x=±2π3+2nπ where n=0,±1,
  5. x=π6+nπ, where n=0,±1,
  6. x=±π3+nπ, where n=0,±1,
  7. x=±π2+nπ, where n=0,±1,
  8. x=π+2nπ, where n=0,±1, (Note: The solution given by the formula 20.1.5 is x=±π+2nπ with n=0,±1, Since every solution appears twice in this expression, we can reduce this to x=π+2nπ.),
  9. x=±π3+2nπ, where n=0,±1,
  10. x=(1)n+1π6+nπ, where n=0,±1,
  11. x=(1)n+1π2+nπ
  12. x=2nπ, or x=±π3+2nπ, where n=0,±1,
  13. x=±π3+nπ, where n=0,±1,
  14. x=±π4+nπ, or x=nπ, where n=0,±1,

Exercise 20.3.5

Use the calculator to find all solutions of the given equation. Approximate the answer to the nearest thousandth.

  1. 2cos(x)=2sin(x)+1
  2. 7tan(x)cos(2x)=1
  3. 4cos2(3x)+cos(3x)=sin(3x)+2
  4. sin(x)+tan(x)=cos(x)
Answer
  1. x1.995+2nπ, or x0.424+2nπ, where n=0,±1,
  2. x0.848+nπ, or x0.148+nπ, or x0.700+nπ, where n=0,±1,
  3. x0.262+n2π3, or x0.906+n2π3, or x1.309+n2π3, or x1.712+n2π3, where n=0,±1,
  4. x0.443+2nπ, or x2.193+2nπ, where n=0,±1,

This page titled 20.3: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?