Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

23.3: Exercises

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise 23.3.1

Find the first seven terms of the sequence.

  1. an=3n
  2. an=5n+3
  3. an=n2+2
  4. an=n
  5. an=(1)n+1
  6. an=n+1n
  7. ak=10k
  8. ai=5+(1)i
Answer
  1. 3,6,9,12,15,18,21
  2. 8,13,18,23,28,33,38
  3. 3,6,11,18,27,38,51
  4. 1,2,3,4,5,6,7
  5. 1,1,1,1,1,1,1
  6. 2,32,23,54,65,76,87
  7. 10,100,1000,10000,100000,1000000,10000000
  8. 4,6,4,6,4,6,4

Exercise 23.3.2

Find the first six terms of the sequence.

  1. a1=5, an=an1+3 for n2
  2. a1=7, an=10an1 for n2
  3. a1=1, an=2an1+1 for n2
  4. a1=6, a2=4, an=an1an2 for n3
Answer
  1. 5,8,11,14,17
  2. 7,70,700,7000,70000
  3. 1,3,7,15,31
  4. 6,4,2,6,4

Exercise 23.3.3

Find the value of the series.

  1. 4n=1an, where an=5n
  2. 5k=1ak, where ak=k
  3. 4i=1ai, where an=n2
  4. 6n=1(n4)
  5. 3k=1(k2+4k4)
  6. 4j=11j+1
Answer
  1. 50
  2. 15
  3. 30
  4. 3
  5. 26
  6. 7760

Exercise 23.3.4

Is the sequence below part of an arithmetic sequence? In the case that it is part of an arithmetic sequence, find the formula for the nth term an in the form an=a1+d(n1).

  1. 5,8,11,14,17,
  2. 10,7,4,1,2,
  3. 1,1,1,1,1,1,
  4. 18,164,310,474,
  5. 73.4,51.7,30,
  6. 9,3,3,8,14,
  7. 4,4,4,4,4,
  8. 2.72,2.82,2.92,3.02,3.12,
  9. 2,5,8,11,
  10. 35,110,25,
  11. an=4+5n
  12. aj=2j5
  13. an=n2+8n+15
  14. ak=9(k+5)+7k1
Answer

For the convenience of those who prefer to use an=a+bn as standard form we have provided answers also in that form.

  1. 5+3(n1)=2+3n
  2. 10+3(n1)=13+3n
  3. no
  4. no
  5. 73.421.7(n1)=95.121.7n
  6. no
  7. 4+0·(n1)=4+0·n
  8. 2.72.1(n1)=2.62.1n
  9. no
  10. 35+12(n1)=1110+12n
  11. 9+5(n1)=4+5n
  12. 3+2(j1)=5+2j
  13. no
  14. 29+16(k1)=13+16k

Exercise 23.3.5

Determine the general nth term an of an arithmetic sequence {an} with the data given below.

  1. d=4, and a8=57
  2. d=3, and a99=70
  3. a1=14, and a7=16
  4. a1=80, and a5=224
  5. a3=10, and a14=23
  6. a20=2, and a60=32
Answer
  1. 57+4(n8)=29+4(n1)=25+4n
  2. 703(n99)=2243(n1)=2273n
  3. 145(n1)=195n
  4. 80+76(n1)=156+76n
  5. 103(n3)=163(n1)=193n
  6. 2+34(n20)=49/4+34(n1)=13+34n

Exercise 23.3.6

Determine the value of the indicated term of the given arithmetic sequence.

  1. if a1=8, and a15=92, find a19
  2. if d=2, and a3=31, find a81
  3. if a1=0, and a17=102, find a73
  4. if a7=128, and a37=38, find a26
Answer
  1. 116
  2. 187
  3. 36218
  4. 71

Exercise 23.3.7

Determine the sum of the arithmetic sequence.

  1. Find the sum a1++a48 for the arithmetic sequence ai=4i+7.
  2. Find the sum 21i=1ai for the arithmetic sequence an=25n.
  3. Find the sum: 99i=1(10i+1)
  4. Find the sum: 200n=1(9n)
  5. Find the sum of the first 100 terms of the arithmetic sequence: 2,4,6,8,10,12,
  6. Find the sum of the first 83 terms of the arithmetic sequence: 25,21,17,13,9,5,
  7. Find the sum of the first 75 terms of the arithmetic sequence: 2012,2002,1992,1982,
  8. Find the sum of the first 16 terms of the arithmetic sequence: 11,6,1,
  9. Find the sum of the first 99 terms of the arithmetic sequence: 8,8.2,8.4,8.6,8.8,9,9.2,
  10. Find the sum 7+8+9+10++776+777
  11. Find the sum of the first 40 terms of the arithmetic sequence: 5,5,5,5,5,
Answer
  1. 5,040
  2. 1,113
  3. 49,599
  4. 21,900
  5. 10,100
  6. 11,537
  7. 123,150
  8. 424
  9. 1762.2
  10. 302,232
  11. 200

This page titled 23.3: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?