Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

13.2.10: Chapter 10

( \newcommand{\kernel}{\mathrm{null}\,}\)

Try It

10.1 The Ellipse

1.

x2+y216=1x2+y216=1

2.

(x−1)216+(y−3)24=1(x−1)216+(y−3)24=1

3.

center: (0,0);(0,0); vertices: (±6,0);(±6,0); co-vertices: (0,±2);(0,±2); foci: (±42–√,0)(±42,0)

b2ec109544091d745a7ae836c7cf35db54011ee34.

Standard form: x216+y249=1;x216+y249=1; center: (0,0);(0,0); vertices: (0,±7);(0,±7); co-vertices: (±4,0);(±4,0); foci: (0,±33−−√)(0,±33)

0e737b089bdd8054841a8294d67ccfdeeff6f2eb5.

Center: (4,2);(4,2); vertices: (−2,2)(−2,2) and (10,2);(10,2); co-vertices: (4,2−25–√)(4,2−25) and (4,2+25–√);(4,2+25); foci: (0,2)(0,2) and (8,2)(8,2)

fd84b64f7b9f310503d634df0bc5b7146a0a49a76.

(x−3)24+(y+1)216=1;(x−3)24+(y+1)216=1; center: (3,−1);(3,−1); vertices: (3,−5)(3,−5) and (3,3);(3,3); co-vertices: (1,−1)(1,−1) and (5,−1);(5,−1); foci: (3,−1−23–√)(3,−1−23) and (3,−1+23–√)(3,−1+23)

7.

  1. ⓐ x257,600+y225,600=1x257,600+y225,600=1
  2. ⓑ The people are standing 358 feet apart.

10.2 The Hyperbola

1.

Vertices: (±3,0);(±3,0); Foci: (±34−−√,0)(±34,0)

2.

y24−x216=1y24−x216=1

3.

(y−3)225+(x−1)2144=1(y−3)225+(x−1)2144=1

4.

vertices: (±12,0);(±12,0); co-vertices: (0,±9);(0,±9); foci: (±15,0);(±15,0); asymptotes: y=±34x;y=±34x;

c315d2b489a8535d6b6bd7810ded932996bf11f35.

center: (3,−4);(3,−4); vertices: (3,−14)(3,−14) and (3,6);(3,6); co-vertices: (−5,−4);(−5,−4); and (11,−4);(11,−4); foci: (3,−4−241−−√)(3,−4−241) and (3,−4+241−−√);(3,−4+241); asymptotes: y=±54(x−3)−4y=±54(x−3)−4

f55d78608dc0c90c104e6a49e2caa8a203d3ec036.

The sides of the tower can be modeled by the hyperbolic equation. x2400−y23600=1or x2202−y2602=1.x2400−y23600=1or x2202−y2602=1.

10.3 The Parabola

1.

Focus: (−4,0);(−4,0); Directrix: x=4;x=4; Endpoints of the latus rectum: (−4,±8)(−4,±8)

c6a17af110ab120d3470f7d723226df16a1359582.

Focus: (0,2);(0,2); Directrix: y=−2;y=−2; Endpoints of the latus rectum: (±4,2).(±4,2).

fb2d5a2609085d48d5efff756bfcbb7212b7c80d3.

x2=14y.x2=14y.

4.

Vertex: (8,−1);(8,−1); Axis of symmetry: y=−1;y=−1; Focus: (9,−1);(9,−1); Directrix: x=7;x=7; Endpoints of the latus rectum: (9,−3)(9,−3) and (9,1).(9,1).

d0d0832a050bf9af39866fc8c3100d83390b3f055.

Vertex: (−2,3);(−2,3); Axis of symmetry: x=−2;x=−2; Focus: (−2,−2);(−2,−2); Directrix: y=8;y=8; Endpoints of the latus rectum: (−12,−2)(−12,−2) and (8,−2).(8,−2).

7297ffaacad2091ab1448f047075519325daafef6.

  1. ⓐ y2=1280xy2=1280x
  2. ⓑ The depth of the cooker is 500 mm

10.4 Rotation of Axes

1.

  1. ⓐ hyperbola
  2. ⓑ ellipse

2.

x′24+y′21=1x′24+y′21=1

3.

  1. ⓐ hyperbola
  2. ⓑ ellipse

10.5 Conic Sections in Polar Coordinates

1.

ellipse; e=13;x=−2e=13;x=−2

2.

4a575f682c34a9d263f0c395a4e40f14f9a4b994

3.

r=11−cosθr=11−cosθ

4.

4−8x+3x2−y2=04−8x+3x2−y2=0

10.1 Section Exercises

1.

An ellipse is the set of all points in the plane the sum of whose distances from two fixed points, called the foci, is a constant.

3.

This special case would be a circle.

5.

It is symmetric about the x-axis, y-axis, and the origin.

7.

yes; x232+y222=1x232+y222=1

9.

yes; x2(12)2+y2(13)2=1x2(12)2+y2(13)2=1

11.

x222+y272=1;x222+y272=1; Endpoints of major axis (0,7)(0,7) and (0,−7).(0,−7). Endpoints of minor axis (2,0)(2,0) and (−2,0).(−2,0). Foci at (0,35–√),(0,−35–√).(0,35),(0,−35).

13.

x2(1)2+y2(13)2=1;x2(1)2+y2(13)2=1; Endpoints of major axis (1,0)(1,0) and (−1,0).(−1,0). Endpoints of minor axis (0,13),(0,−13).(0,13),(0,−13). Foci at (22√3,0),(−22√3,0).(223,0),(−223,0).

15.

(x−2)272+(y−4)252=1;(x−2)272+(y−4)252=1; Endpoints of major axis (9,4),(−5,4).(9,4),(−5,4). Endpoints of minor axis (2,9),(2,−1).(2,9),(2,−1). Foci at (2+26–√,4),(2−26–√,4).(2+26,4),(2−26,4).

17.

(x+5)222+(y−7)232=1;(x+5)222+(y−7)232=1; Endpoints of major axis (−5,10),(−5,4).(−5,10),(−5,4). Endpoints of minor axis (−3,7),(−7,7).(−3,7),(−7,7). Foci at (−5,7+5–√),(−5,7−5–√).(−5,7+5),(−5,7−5).

19.

(x−1)232+(y−4)222=1;(x−1)232+(y−4)222=1; Endpoints of major axis (4,4),(−2,4).(4,4),(−2,4). Endpoints of minor axis (1,6),(1,2).(1,6),(1,2). Foci at (1+5–√,4),(1−5–√,4).(1+5,4),(1−5,4).

21.

(x−3)2(32√)2+(y−5)2(2√)2=1;(x−3)2(32)2+(y−5)2(2)2=1; Endpoints of major axis (3+32–√,5),(3−32–√,5). (3+32,5),(3−32,5).  Endpoints of minor axis (3,5+2–√),(3,5−2–√). (3,5+2),(3,5−2).  Foci at (7,5),(−1,5).(7,5),(−1,5).

23.

(x+5)2(5)2+(y−2)2(2)2=1;(x+5)2(5)2+(y−2)2(2)2=1; Endpoints of major axis (0,2),(−10,2).(0,2),(−10,2). Endpoints of minor axis (−5,4),(−5,0).(−5,4),(−5,0). Foci at (−5+21−−√,2),(−5−21−−√,2).(−5+21,2),(−5−21,2).

25.

(x+3)2(5)2+(y+4)2(2)2=1;(x+3)2(5)2+(y+4)2(2)2=1; Endpoints of major axis (2,−4),(−8,−4).(2,−4),(−8,−4). Endpoints of minor axis (−3,−2),(−3,−6).(−3,−2),(−3,−6). Foci at (−3+21−−√,−4),(−3−21−−√,−4).(−3+21,−4),(−3−21,−4).

27.

Foci (−3,−1+11−−√),(−3,−1−11−−√)(−3,−1+11),(−3,−1−11)

29.

Focus (0,0)(0,0)

31.

Foci (−10,30),(−10,−30)(−10,30),(−10,−30)

33.

Center (0,0),(0,0), Vertices (4,0),(−4,0),(0,3),(0,−3),(4,0),(−4,0),(0,3),(0,−3), Foci (7–√,0),(−7–√,0)(7,0),(−7,0)

a82343b66fbae11e1cdefa2af7807ae4b021935e35.

Center (0,0),(0,0), Vertices (19,0),(−19,0),(0,17),(0,−17), (19,0),(−19,0),(0,17),(0,−17),  Foci (0,42√63),(0,−42√63)(0,4263),(0,−4263)

462bcd587f176701310b6ef873fb2b68bab7f3c837.

Center (−3,3),(−3,3), Vertices (0,3),(−6,3),(−3,0),(−3,6),(0,3),(−6,3),(−3,0),(−3,6), Focus (−3,3)(−3,3)

Note that this ellipse is a circle. The circle has only one focus, which coincides with the center.

ec26f05aeb9d624c260734b203b8f6e41499215b39.

Center (1,1),(1,1), Vertices (5,1),(−3,1),(1,3),(1,−1),(5,1),(−3,1),(1,3),(1,−1), Foci (1,1+23–√),(1,1−23–√)(1,1+23),(1,1−23)

1556bf0a07d37a8ad3e504de3c28f86cada6e0ce41.

Center (−4,5),(−4,5), Vertices (−2,5),(−6,4),(−4,6),(−4,4),(−2,5),(−6,4),(−4,6),(−4,4), Foci (−4+3–√,5),(−4−3–√,5)(−4+3,5),(−4−3,5)

30e9d0de308eff10347674e76d3046fc433b0b1743.

Center (−2,1),(−2,1), Vertices (0,1),(−4,1),(−2,5),(−2,−3),(0,1),(−4,1),(−2,5),(−2,−3), Foci (−2,1+23–√),(−2,1−23–√)(−2,1+23),(−2,1−23)

f3d602734c8ddff2d3e0bc7dfac7c1161c3bbcde45.

Center (−2,−2),(−2,−2), Vertices (0,−2),(−4,−2),(−2,0),(−2,−4),(0,−2),(−4,−2),(−2,0),(−2,−4), Focus (−2,−2)(−2,−2)

ca4ab27be15a293c54cddf3034f6372247046bb447.

x225+y229=1x225+y229=1

49.

(x−4)225+(y−2)21=1(x−4)225+(y−2)21=1

51.

(x+3)216+(y−4)24=1(x+3)216+(y−4)24=1

53.

x281+y29=1x281+y29=1

55.

(x+2)24+(y−2)29=1(x+2)24+(y−2)29=1

57.

Area = 12πsquareunitsArea = 12πsquareunits

59.

Area = 25–√πArea = 25π square units.

61.

Area = 9πArea = 9π square units.

63.

x24h2+y214h2=1x24h2+y214h2=1

65.

x2400+y2144=1x2400+y2144=1 . Distance = 17.32 feet

67.

Approximately 51.96 feet

10.2 Section Exercises

1.

A hyperbola is the set of points in a plane the difference of whose distances from two fixed points (foci) is a positive constant.

3.

The foci must lie on the transverse axis and be in the interior of the hyperbola.

5.

The center must be the midpoint of the line segment joining the foci.

7.

yes x262−y232=1x262−y232=1

9.

yes x242−y252=1x242−y252=1

11.

x252−y262=1;x252−y262=1; vertices: (5,0),(−5,0);(5,0),(−5,0); foci: (61−−√,0),(−61−−√,0);(61,0),(−61,0); asymptotes: y=65x,y=−65xy=65x,y=−65x

13.

y222−x292=1;y222−x292=1; vertices: (0,2),(0,−2);(0,2),(0,−2); foci: (0,85−−√),(0,−85−−√);(0,85),(0,−85); asymptotes: y=29x,y=−29xy=29x,y=−29x

15.

(x−1)232−(y−2)242=1;(x−1)232−(y−2)242=1; vertices: (4,2),(−2,2);(4,2),(−2,2); foci: (6,2),(−4,2);(6,2),(−4,2); asymptotes: y=43(x−1)+2,y=−43(x−1)+2y=43(x−1)+2,y=−43(x−1)+2

17.

(x−2)272−(y+7)272=1;(x−2)272−(y+7)272=1; vertices: (9,−7),(−5,−7);(9,−7),(−5,−7); foci: (2+72–√,−7),(2−72–√,−7);(2+72,−7),(2−72,−7); asymptotes: y=x−9,y=−x−5y=x−9,y=−x−5

19.

(x+3)232−(y−3)232=1;(x+3)232−(y−3)232=1; vertices: (0,3),(−6,3);(0,3),(−6,3); foci: (−3+32–√,1),(−3−32–√,1);(−3+32,1),(−3−32,1); asymptotes: y=x+6,y=−xy=x+6,y=−x

21.

(y−4)222−(x−3)242=1;(y−4)222−(x−3)242=1; vertices: (3,6),(3,2);(3,6),(3,2); foci: (3,4+25–√),(3,4−25–√);(3,4+25),(3,4−25); asymptotes: y=12(x−3)+4,y=−12(x−3)+4y=12(x−3)+4,y=−12(x−3)+4

23.

(y+5)272−(x+1)2702=1;(y+5)272−(x+1)2702=1; vertices: (−1,2),(−1,−12);(−1,2),(−1,−12); foci: (−1,−5+7101−−−√),(−1,−5−7101−−−√);(−1,−5+7101),(−1,−5−7101); asymptotes: y=110(x+1)−5,y=−110(x+1)−5y=110(x+1)−5,y=−110(x+1)−5

25.

(x+3)252−(y−4)222=1;(x+3)252−(y−4)222=1; vertices: (2,4),(−8,4);(2,4),(−8,4); foci: (−3+29−−√,4),(−3−29−−√,4);(−3+29,4),(−3−29,4); asymptotes: y=25(x+3)+4,y=−25(x+3)+4y=25(x+3)+4,y=−25(x+3)+4

27.

y=25(x−3)−4,y=−25(x−3)−4y=25(x−3)−4,y=−25(x−3)−4

29.

y=34(x−1)+1,y=−34(x−1)+1y=34(x−1)+1,y=−34(x−1)+1

31.

fdf6c3f2cbab7f8dee97789fe86fdf24d4e1694b

33.

54d1247006162f2e403bd70c80648a6ff3b49043

35.

03a3f623d0d44a6acff3d2c286117c3257e23d25

37.

3244ba9a0895805241eede69173a4c04dcab90cd

39.

5461b9d196e49a2da673af59061f233c21bc8e5b

41.

4c8b4cf4a99c74175532412a7bdd37f56569400a

43.

ebb78cf02271a24caf2fd955b8c8a4f3ff7841a9

45.

x29−y216=1x29−y216=1

47.

(x−6)225−(y−1)211=1(x−6)225−(y−1)211=1

49.

(x−4)225−(y−2)21=1(x−4)225−(y−2)21=1

51.

y216−x225=1y216−x225=1

53.

y29−(x+1)29=1y29−(x+1)29=1

55.

(x+3)225−(y+3)225=1(x+3)225−(y+3)225=1

57.

y(x)=3x2+1−−−−−√,y(x)=−3x2+1−−−−−√y(x)=3x2+1,y(x)=−3x2+1

cd14d7f489d4ccc82593bd0107eed53f2351f83b59.

y(x)=1+2x2+4x+5−−−−−−−−−√,y(x)=1−2x2+4x+5−−−−−−−−−√y(x)=1+2x2+4x+5,y(x)=1−2x2+4x+5

0c89c8c4010bed5dbff59647221ba92b78cd3b1761.

x225−y225=1x225−y225=1

b1369bb79cc265b54f7540771cf6e366e317eb7163.

x2100−y225=1x2100−y225=1

94d71c6d4a5025a1941f3073aa36296e5dc24cc765.

x2400−y2225=1x2400−y2225=1

c2944b00fb78c091c1004129d33273d63c350df967.

4(x−1)2−y22=164(x-1)2-y22=16

69.

(x−h)2a2−(y−k)2b2=(x−3)2−9y2=4(x−h)2a2=4-(y-k)2b2=(x-3)2-9y2=4

10.3 Section Exercises

1.

A parabola is the set of points in the plane that lie equidistant from a fixed point, the focus, and a fixed line, the directrix.

3.

The graph will open down.

5.

The distance between the focus and directrix will increase.

7.

yes x2=4(116)yx2=4(116)y

9.

yes (y−3)2=4(2)(x−2)(y−3)2=4(2)(x−2)

11.

y2=18x,V:(0,0);F:(132,0);d:x=−132y2=18x,V:(0,0);F:(132,0);d:x=−132

13.

x2=−14y,V:(0,0);F:(0,−116);d:y=116x2=−14y,V:(0,0);F:(0,−116);d:y=116

15.

y2=136x,V:(0,0);F:(1144,0);d:x=−1144y2=136x,V:(0,0);F:(1144,0);d:x=−1144

17.

(x−1)2=4(y−1),V:(1,1);F:(1,2);d:y=0(x−1)2=4(y−1),V:(1,1);F:(1,2);d:y=0

19.

(y−4)2=2(x+3),V:(−3,4);F:(−52,4);d:x=−72(y−4)2=2(x+3),V:(−3,4);F:(−52,4);d:x=−72

21.

(x+4)2=24(y+1),V:(−4,−1);F:(−4,5);d:y=−7(x+4)2=24(y+1),V:(−4,−1);F:(−4,5);d:y=−7

23.

(y−3)2=−12(x+1),V:(−1,3);F:(−4,3);d:x=2(y−3)2=−12(x+1),V:(−1,3);F:(−4,3);d:x=2

25.

(x−5)2=45(y+3),V:(5,−3);F:(5,−145);d:y=−165(x−5)2=45(y+3),V:(5,−3);F:(5,−145);d:y=−165

27.

(x−2)2=−2(y−5),V:(2,5);F:(2,92);d:y=112(x−2)2=−2(y−5),V:(2,5);F:(2,92);d:y=112

29.

(y−1)2=43(x−5),V:(5,1);F:(163,1);d:x=143(y−1)2=43(x−5),V:(5,1);F:(163,1);d:x=143

31.

87f03c7644e4801d4b687b6d66ae591f570026d6

33.

73ced13bac4e2882aef12168e7259c91a7af7603

35.

ff1769bd2efa0c894e105160760af7578d257fa0

37.

da9c60f65c54dd12c45bc111afa137f6019beb12

39.

3d83d25d75e50810486c080f27bbb4bcbf70af2a

41.

d17cdffa57fd836e867c009ee9132f9dde896351

43.

0710b58cba97ea10acd70b6154e2ddbdda693687

45.

x2=−16yx2=−16y

47.

(y−2)2=42–√(x−2)(y−2)2=42(x−2)

49.

(y+3–√)2=−42–√(x−2–√)(y+3)2=−42(x−2)

51.

x2=yx2=y

53.

(y−2)2=14(x+2)(y−2)2=14(x+2)

55.

(y−3–√)2=45–√(x+2–√)(y−3)2=45(x+2)

57.

y2=−8xy2=−8x

59.

(y+1)2=12(x+3)(y+1)2=12(x+3)

61.

(0,1)(0,1)

63.

At the point 2.25 feet above the vertex.

65.

0.5625 feet

67.

x2=−125(y−20),x2=−125(y−20), height is 7.2 feet

69.

2304 feet

10.4 Section Exercises

1.

The xyxy term causes a rotation of the graph to occur.

3.

The conic section is a hyperbola.

5.

It gives the angle of rotation of the axes in order to eliminate the xyxy term.

7.

AB=0,AB=0, parabola

9.

AB=−4<0,AB=−4<0, hyperbola

11.

AB=6>0,AB=6>0, ellipse

13.

B2−4AC=0,B2−4AC=0, parabola

15.

B2−4AC=0,B2−4AC=0, parabola

17.

B2−4AC=−96<0,B2−4AC=−96<0, ellipse

19.

7x′2+9y′2−4=07x′2+9y′2−4=0

21.

3x′2+2x′y′−5y′2+1=03x′2+2x′y′−5y′2+1=0

23.

θ=60∘,11x′2−y′2+3–√x′+y′−4=0θ=60∘,11x′2−y′2+3x′+y′−4=0

25.

θ=150∘,21x′2+9y′2+4x′−43–√y′−6=0θ=150∘,21x′2+9y′2+4x′−43y′−6=0

27.

θ≈36.9∘,125x′2+6x′−42y′+10=0θ≈36.9∘,125x′2+6x′−42y′+10=0

29.

θ=45∘,3x′2−y′2−2–√x′+2–√y′+1=0θ=45∘,3x′2−y′2−2x′+2y′+1=0

31.

2√2(x′+y′)=12(x′−y′)222(x′+y′)=12(x′−y′)2

6dfbb83afe961ca0596078c9956dbc79321bdfbf33.

(x′−y′)28+(x′+y′)22=1(x′−y′)28+(x′+y′)22=1

f9567d3f8610ada96b529721a0e3a7f885c6c5f735.

(x′+y′)22−(x′−y′)22=1(x′+y′)22−(x′−y′)22=1

16a8dc7a0c91fa720bf38b60258a525228ca1ce437.

3√2x′−12y′=(12x′+3√2y′−1)232x′−12y′=(12x′+32y′−1)2

0f8a127ab0d1d92ee1ba9f74f5e7d685f22f3e1239.

d61d20f268f293feb330cd594f7093dfe9e07ee6

41.

254eac23511aacad4f5ed93fc5b6c4c997685cd3

43.

63435ab794e839984f36abed6535fdc65e838646

45.

0aa59907af779f09cf2c7f2f1b6e28ea12eb2bad

47.

3d28abebf73c594f3716f13f57d5c0f03494d7f3

49.

b801c153d19fdebb8a380f90fdc1537a80abf9ab

51.

θ=45∘θ=45∘

498d436b6b6c1ca917e669fa252c797fa1a9677053.

θ=60∘θ=60∘

023617cfa53a2a36fa9828ebf63880766626c9aa55.

θ≈36.9∘θ≈36.9∘

6a3f4621b2ae4c93354f6e47b238cdc7789999fa57.

−46–√<k<46–√−46<k<46

59.

k=2k=2

10.5 Section Exercises

1.

If eccentricity is less than 1, it is an ellipse. If eccentricity is equal to 1, it is a parabola. If eccentricity is greater than 1, it is a hyperbola.

3.

The directrix will be parallel to the polar axis.

5.

One of the foci will be located at the origin.

7.

Parabola with e=1e=1 and directrix 3434 units below the pole.

9.

Hyperbola with e=2e=2 and directrix 5252 units above the pole.

11.

Parabola with e=1e=1 and directrix 310310 units to the right of the pole.

13.

Ellipse with e=27e=27 and directrix 22 units to the right of the pole.

15.

Hyperbola with e=53e=53 and directrix 115115 units above the pole.

17.

Hyperbola with e=87e=87 and directrix 7878 units to the right of the pole.

19.

25x2+16y2−12y−4=025x2+16y2−12y−4=0

21.

21x2−4y2−30x+9=021x2−4y2−30x+9=0

23.

64y2=48x+964y2=48x+9

25.

96y2−25x2+110y+25=096y2−25x2+110y+25=0

27.

3x2+4y2−2x−1=03x2+4y2−2x−1=0

29.

5x2+9y2−24x−36=05x2+9y2−24x−36=0

31.

038c28cff1c24a0d41cab9a4bbc3b1cbebcfc596

33.

3189655a5a94b104c7153374b6096c080255ac30

35.

6e9344b2f87ac1ea8294801c3900188d01accde7

37.

5600759557d1c7da78884945773f3607fdad67ec

39.

126ddd055120076e8a9b7b02c2a35717b5dbe591

41.

f300b66b92797349e4ef1268ad4723d3e6565bd7

43.

r=45+cosθr=45+cosθ

45.

r=41+2sinθr=41+2sinθ

47.

r=11+cosθr=11+cosθ

49.

r=78−28cosθr=78−28cosθ

51.

r=122+3sinθr=122+3sinθ

53.

r=154−3cosθr=154−3cosθ

55.

r=33−3cosθr=33−3cosθ

57.

r=±21+sinθcosθ√r=±21+sinθcosθ

59.

r=±24cosθ+3sinθr=±24cosθ+3sinθ

Review Exercises

1.

x252+y282=1;x252+y282=1; center: (0,0);(0,0); vertices: (5,0),(−5,0),(0,8),(0,−8);(5,0),(−5,0),(0,8),(0,−8); foci: (0,39−−√),(0,−39−−√)(0,39),(0,−39)

3.

(x+3)212+(y−2)232=1(−3,2);(−2,2),(−4,2),(−3,5),(−3,−1);(−3,2+22–√),(−3,2−22–√)(x+3)212+(y−2)232=1(−3,2);(−2,2),(−4,2),(−3,5),(−3,−1);(−3,2+22),(−3,2−22)

5.

center: (0,0);(0,0); vertices: (6,0),(−6,0),(0,3),(0,−3);(6,0),(−6,0),(0,3),(0,−3); foci: (33–√,0),(−33–√,0)(33,0),(−33,0)

c080be43df7edfa438788778d0dfb36e9807b15a7.

center: (−2,−2);(−2,−2); vertices: (2,−2),(−6,−2),(−2,6),(−2,−10);(2,−2),(−6,−2),(−2,6),(−2,−10); foci: (−2,−2+43–√,),(−2,−2−43–√)(−2,−2+43,),(−2,−2−43)

8c4bc9ce464677072df07dd21e342c394f5f3b729.

x225+y216=1x225+y216=1

11.

Approximately 35.71 feet

13.

(y+1)242−(x−4)262=1;(y+1)242−(x−4)262=1; center: (4,−1);(4,−1); vertices: (4,3),(4,−5);(4,3),(4,−5); foci: (4,−1+213−−√),(4,−1−213−−√)(4,−1+213),(4,−1−213)

15.

(x−2)222−(y+3)2(23√)2=1;(x−2)222−(y+3)2(23)2=1; center: (2,−3);(2,−3); vertices: (4,−3),(0,−3);(4,−3),(0,−3); foci: (6,−3),(−2,−3)(6,−3),(−2,−3)

17.

14011370bb7e706d3a44406f51d4a7df7817ae2119.

29b012d8db268d6179759aae32838eaee384d22f21.

(x−5)21−(y−7)23=1(x−5)21−(y−7)23=1

23.

(x+2)2=12(y−1);(x+2)2=12(y−1); vertex: (−2,1);(−2,1); focus: (−2,98);(−2,98); directrix: y=78y=78

25.

(x+5)2=(y+2);(x+5)2=(y+2); vertex: (−5,−2);(−5,−2); focus: (−5,−74);(−5,−74); directrix: y=−94y=−94

27.

b71e1c477d32d4d74fdee8e88b9933f6cf1123e729.

c35e207ae4b9969f15caf1ad8221ba209440a0bb31.

(x−2)2=(12)(y−1)(x−2)2=(12)(y−1)

33.

B2−4AC=0,B2−4AC=0, parabola

35.

B2−4AC=−31<0,B2−4AC=−31<0, ellipse

37.

θ=45∘,x′2+3y′2−12=0θ=45∘,x′2+3y′2−12=0

39.

θ=45∘θ=45∘

fe5c56cda2095a5098b339ee3638507a1ef8011e41.

Hyperbola with e=5e=5 and directrix 22 units to the left of the pole.

43.

Ellipse with e=34e=34 and directrix 1313 unit above the pole.

45.

a20b3fc13b553bf1692a5ca36dee29c99b11ba7e47.

f462c254f631e4fedb723bf1af6fc8acad5b50fd49.

r=31+cos θr=31+cos θ

Practice Test

1.

x232+y222=1;x232+y222=1; center: (0,0);(0,0); vertices: (3,0),(–3,0),(0,2),(0,−2);(3,0),(–3,0),(0,2),(0,−2); foci: (5–√,0),(−5–√,0)(5,0),(−5,0)

3.

center: (3,2);(3,2); vertices: (11,2),(−5,2),(3,8),(3,−4);(11,2),(−5,2),(3,8),(3,−4); foci: (3+27–√,2),(3−27–√,2)(3+27,2),(3−27,2)

d67b05139eac21c725bbc640004e31558f5463bf5.

(x−1)236+(y−2)227=1(x−1)236+(y−2)227=1

7.

x272−y292=1;x272−y292=1; center: (0,0);(0,0); vertices (7,0),(−7,0);(7,0),(−7,0); foci: (130−−−√,0),(−130−−−√,0);(130,0),(−130,0); asymptotes: y=±97xy=±97x

9.

center: (3,−3);(3,−3); vertices: (8,−3),(−2,−3);(8,−3),(−2,−3); foci: (3+26−−√,−3),(3−26−−√,−3);(3+26,−3),(3−26,−3); asymptotes: y=±15(x−3)−3y=±15(x−3)−3

eaa9361c5af97ff641ce1120321df4470291c9ac11.

(y−3)21−(x−1)28=1(y−3)21−(x−1)28=1

13.

(x−2)2=13(y+1);(x−2)2=13(y+1); vertex: (2,−1);(2,−1); focus: (2,−1112);(2,−1112); directrix: y=−1312y=−1312

15.

4ddde24b5f86b3509827cd8575d9f899d2f39f4d17.

Approximately 8.498.49 feet

19.

parabola; θ≈63.4∘θ≈63.4∘

21.

x′2−4x′+3y′=0x′2−4x′+3y′=0

4b516d594ce21e55f34d07e49f3ac3b5ce87335b23.

Hyperbola with e=32,e=32, and directrix 5656 units to the right of the pole.

25.

cac72f4524e481daa679ab9d108219f1de829d65


13.2.10: Chapter 10 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?