# Chapter 8: Introduction to Differential Equations

- Page ID
- 10780

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

Many real-world phenomena can be modeled mathematically by using differential equations. Population growth, radioactive decay, predator-prey models, and spring-mass systems are four examples of such phenomena. In this chapter we study some of these applications. A goal of this chapter is to develop solution techniques for different types of differential equations. As the equations become more complicated, the solution techniques also become more complicated, and in fact an entire course could be dedicated to the study of these equations. In this chapter we study several types of differential equations and their corresponding methods of solution.

- 8.0: Prelude to Differential Equations
- A goal of this chapter is to develop solution techniques for different types of differential equations. As the equations become more complicated, the solution techniques also become more complicated, and in fact an entire course could be dedicated to the study of these equations. In this chapter we study several types of differential equations and their corresponding methods of solution.

- 8.1: Basics of Differential Equations
- alculus is the mathematics of change, and rates of change are expressed by derivatives. Thus, one of the most common ways to use calculus is to set up an equation containing an unknown function y=f(x) and its derivative, known as a differential equation. Solving such equations often provides information about how quantities change and frequently provides insight into how and why the changes occur.

- 8.2: Direction Fields and Numerical Methods
- In some cases it is possible to predict properties of a solution to a differential equation without knowing the actual solution. We will also study numerical methods for solving differential equations, which can be programmed by using various computer languages or even by using a spreadsheet program.

- 8.3: Separable Differential Equations
- We now examine a solution technique for finding exact solutions to a class of differential equations known as separable differential equations. These equations are common in a wide variety of disciplines, including physics, chemistry, and engineering. We illustrate a few applications at the end of the section.

- 8.4: The Logistic Equation
- Differential equations can be used to represent the size of a population as it varies over time. We saw this in an earlier chapter in the section on exponential growth and decay, which is the simplest model. A more realistic model includes other factors that affect the growth of the population. In this section, we study the logistic differential equation and see how it applies to the study of population dynamics in the context of biology.

- 8.5: First-order Linear Equations
- Any first-order linear differential equation can be written in the form y′+p(x)y=q(x). We can use a five-step problem-solving strategy for solving a first-order linear differential equation that may or may not include an initial value. Applications of first-order linear differential equations include determining motion of a rising or falling object with air resistance and finding current in an electrical circuit.

- Chapter 8 Review Exercises
- These are homework exercises to accompany OpenStax's "Calculus" Textmap.

*Thumbnail: An exponential growth model of population.*

## Contributors

Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.