Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

1E: Exercises

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise 1E.1

For every positive integer n, prove that 1(1)(2)+1(2)(3)++1(n)(n+1)=nn+1.

Answer

We can rewrite each term as 1k(k+1)=k+1kk(k+1)=1k1k+1. Therefore, the sum telescopes as follows: 1112+1213++1n1n+1=11n+1=nn+1.

Exercise 1E.2

For any positive integer n, prove that 2n32n1 is always divisible by 17.

Answer

By Fermat's Little Theorem, 2161(mod17)$and$3161(mod17). Therefore, 216n1(mod17) and 332n1(mod17). Hence, 2n32n11110(mod17).

Exercise 1E.3

a. Let a,b,cZ+.  Show that gcd if and only if \gcd(a, b) = 1 and \gcd(a, c) = 1.

b. Let a,b,c,d \in \mathbb{Z}.  If a|b and c|d, show that gcd(a,c)|gcd(b,d).

Exercise \PageIndex{4}

Show that a^5 \equiv  a \pmod{5} for all integers a.

Exercise \PageIndex{5}

Using Euclidean algorithm to find \gcd(2520,154) and express \gcd(2520, 154) as an integer combination of 2520 and 154. Also, 

Using the Euclidean algorithm to find \gcd(-2520,154) and express \gcd(-2520, 154) as an integer combination of -2520 and 154.

Exercise \PageIndex{6}

For every positive integer n, prove that n^3-n is divisible by 3.

Exercise \PageIndex{7}

For any k \in \mathbb{N} prove that \gcd(4k+3, 7k+5)=1.

Exercise \PageIndex{8}

a) Use the Euclidean algorithm to find the \gcd(-29,571)?

b) Find integers x and y s.t. \gcd(-29,571)= -29(x)+571(y)?

Exercise \PageIndex{9}

Show that any two consecutive odd integers are relatively prime.

 

Exercise \PageIndex{10}

 If m,n are any odd integers, show that m^2-n^2 is divisible by 8.

 

Exercise \PageIndex{11}

a) Prove that for all integers n\geq 1,

\frac{1}{2!}+ \frac{2}{3!} + \cdots +\frac{n}{(n+1)!} = 1-\frac{1}{(n+1)!}.

b) Prove that for all integers n\geq 1,

\frac{1}{\sqrt{1}}+ \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} \geq \sqrt{n}.

 

 

Exercise \PageIndex{12}

For integer n\geq 1, define 

S_n=- {2 \choose 2}+{3 \choose 2}-{4 \choose 2}+{5 \choose 2}\cdots + {2n+1 \choose 2}.

  1. Evaluate S_n for n=1,2,3,4 and 5.

  2. Use part (a) to guess a formula for S_n.

  3. Use mathematical induction to prove your guess.

Exercise \PageIndex{13}

Find the remainder when 8^{391} is divided by 5.

Exercise \PageIndex{14}

For each of the following pairs of integers a and n. show that a and n are relatively prime, determine multuplicative inverse of [a] in \mathbb{Z}_n, and Find all integers x for ax \cong 11 (mod \, n).

  1.   a=16, n=35.
  2. a=69, n=89.
Exercise \PageIndex{15}

Find the remainder when (201)(203)(205)(207) is divided by 13.

 


This page titled 1E: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.

Support Center

How can we help?