Skip to main content
Mathematics LibreTexts

2E: Exercises

  • Page ID
    131663
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\)

    Check the following structures for the group properties:

    1. \(\mathbb{Z}_4 \) under addition.

    2. \(\mathbb{Z}_5^* \) under multiplication.

    3. \( \mathbb{Z}_8^* \) under multiplication.

    4. \(\{ \pm 1, \pm i\} \) under multiplication.

    5. Rotations that map a brick to itself.

    6. The four functions \(f(x)=x, g(x)=-x, h(x)= \dfrac{1}{x}, j(x)= \dfrac{-1}{x}\) under composition.

    7. The four matrices \[ \begin{bmatrix}
      1 & 0 \\
      0 & 1
      \end{bmatrix}, 
      \begin{bmatrix}
      -1 & 0 \\
      0 & -1
      \end{bmatrix},
      \begin{bmatrix}
      1 & 0 \\
      0 & -1
      \end{bmatrix},
      \begin{bmatrix}
      -1 & 0 \\
      0 & 1
      \end{bmatrix}
      \]

    under multiplication.

    Exercise \(\PageIndex{2}\)

    Let

    \(H(C) =\Bigg\{ \begin{bmatrix}1 & a & b\\
    0 & 1 & c \\
    0 & 0 & 1 \end{bmatrix}\Big| \ a,b,c, \in \mathbb{C}\Bigg\}\).

    Show that \(H(\mathbb{C})\) is a group under matrix multiplication.  Demonstrate explicitly that \(H(\mathbb{C})\) is always non-abelian.

    Exercise \(\PageIndex{3}\)

    Let \(S = \mathbb{R} \backslash \{-1\}\) and define a binary operation \(\oplus\) on \(S\) by \(a \oplus b = a+b+ab\).  Prove that \((S, \oplus)\) is an abelian group.

    Exercise \(\PageIndex{4}\)

    Given the groups \(\mathbb{R}^*\) and \(\mathbb{Z}\), let \(G = \mathbb{R}^* \times \mathbb{Z}\).  Define a binary operation \(\star\) by \((a,m) \star (b, n) = (ab,m + n)\). Show that \( (G, \star)\) is a group under this operation.

    Exercise \(\PageIndex{5}\)

    Let \(G\) be a group.  Show that if \(a^2 = e\), for all elements of \(a \in G\), then \(G\) must be abelian.

    Exercise \(\PageIndex{6}\)

    Let \(H\) consists of \(2 \times 2\) matrices of the form

    \(\begin{bmatrix} \cos{(x)} & -\sin{(x)}\\
    \sin{(x)} & \cos{(x)} \end{bmatrix}\), where \(x \in \mathbb{R}\). Prove that \(H\) is a subgroup of \(SL_2(\mathbb{R})\).

    Exercise \(\PageIndex{7}\)

    Prove or disprove the following statements: Let \(H\) and \(K\) be subgroups of a group \(G\).

    1. \(H \cup K\) is a subgroup of \(G\).

    2. \(H \cap K\) is a subgroup of \(G\).

     

    Exercise \(\PageIndex{8}\)

    Prove that for each element \(a \in G\), where \(G\) is a group, the centralizer of \(a\), \(C(a)\) is a subgroup of \(G\). Prove that for each element \(a \in G\), where \(G\) is a group, that \(C(a)=C(a^{-1})\).

    Exercise \(\PageIndex{9}\)

    Let \(G=GL(2,\mathbb{R})\).  Then find

    1. \(C \Bigg(\begin{bmatrix}1 & 1\\
      1 & 0 \end{bmatrix}\Bigg)\).

    2. \(C \Bigg( \begin{bmatrix} 0 & 1\\
      1 & 0 \end{bmatrix}\Bigg)\).

    3. \(\mathbb{Z}(G)\).

    Exercise \(\PageIndex{10}\)

    Let \(G\) be a group. \(H=\{g^2: g\in G\}. \)

    1. Prove or disprove: If \(G\) is abelian then  \(H\) is a subgroup.

    2. Prove or disprove:  If \(H\) is a subgroup then \(G\) is abelian.

    Exercise \(\PageIndex{11}\)
    1. List the cyclic subgroups of \(U(30) \).

    \(U(30)=\{1,7,11,13,17,19,23,29\} \).

    Thus \(|U(30)|=8 \).

    Exercise \(\PageIndex{12}\)

    Show that \(U(20)\ne <k> \) for any \(k \) in \(U(20) \).  [Hence, \(U(20) \) is not cyclic.]

    \(U(20)=\{1,3,7,9,11,13,17,19\} \).

    \(|U(20)|=8 \).

    Exercise \(\PageIndex{13}\)

    Decide whether \(U(10) \) is cyclic or not.

    Exercise \(\PageIndex{14}\)

    Is \((\mathbb{Z},+) \) cyclic group?  If so, what are the possible generators?

     


    This page titled 2E: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?