Skip to main content
Mathematics LibreTexts

2E: Exercises

  • Page ID
    131663
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    1. Let

    \(H(C) =\Bigg\{ \begin{bmatrix}1 & a & b\\
    0 & 1 & c \\
    0 & 0 & 1 \end{bmatrix}\Big| \ a,b,c, \in \mathbb{C}\Bigg\}\).

    Show that \(H(\mathbb{C})\) is a group under matrix multiplication.  Demonstrate explicitly that \(H(\mathbb{C})\) is always non-abelian.

    1. Let \(S = \mathbb{R} \backslash \{-1\}\) and define a binary operation \(\oplus\) on \(S\) by \(a \oplus b = a+b+ab\).  Prove that \((S, \oplus)\) is an abelian group.

    2. Given the groups \(\mathbb{R}^*\) and \(\mathbb{Z}\), let \(G = \mathbb{R}^* \times \mathbb{Z}\).  Define a binary operation \(\star\) by \((a,m) \star (b, n) = (ab,m + n)\). Show that \( (G, \star)\) is a group under this operation.

    3. Let \(G\) be a group.  Show that if \(a^2 = e\), for all elements of \(a \in G\), then \(G\) must be abelian.

     

    1. Let \(H\) consists of \(2 \times 2\) matrices of the form

    \(\begin{bmatrix} \cos{(x)} & -\sin{(x)}\\
    \sin{(x)} & \cos{(x)} \end{bmatrix}\), where \(x \in \mathbb{R}\). Prove that \(H\) is a subgroup of \(SL_2(\mathbb{R})\).

     

    1. Prove or disprove the following statements: Let \(H\) and \(K\) be subgroups of a group \(G\).

      1. \(H \cup K\) is a subgroup of \(G\).

      2. \(H \cap K\) is a subgroup of \(G\).

    2. Prove that for each element \(a \in G\), where \(G\) is a group, the centralizer of \(a\), \(C(a)\) is a subgroup of \(G\). Prove that for each element \(a \in G\), where \(G\) is a group, that \(C(a)=C(a^{-1})\).

    3. Let \(G=GL(2,\mathbb{R})\).  Then find

      1. \(C \Bigg(\begin{bmatrix}1 & 1\\
        1 & 0 \end{bmatrix}\Bigg)\).

      2. \(C \Bigg( \begin{bmatrix} 0 & 1\\
        1 & 0 \end{bmatrix}\Bigg)\).

      3. \(\mathbb{Z}(G)\).

     

    1. Let \(G\) be a group. \(H=\{g^2: g\in G\}. \)

    1. Prove or disprove: If \(G\) is abelian then  \(H\) is a subgroup.

    2. Prove or disprove:  If \(H\) is a subgroup then \(G\) is abelian.

    1. List the cyclic subgroups of \(U(30) \).

    \(U(30)=\{1,7,11,13,17,19,23,29\} \).

    Thus \(|U(30)|=8 \).

    1. Show that \(U(20)\ne <k> \) for any \(k \) in \(U(20) \).  [Hence, \(U(20) \) is not cyclic.]

    \(U(20)=\{1,3,7,9,11,13,17,19\} \).

    \(|U(20)|=8 \).

    1. Decide whether \(U(10) \) is cyclic or not.

    2. Is \((\mathbb{Z},+) \) cyclic group?  If so, what are the possible generators?


    This page titled 2E: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?