3.4: Derivatives of Trigonometric Functions
( \newcommand{\kernel}{\mathrm{null}\,}\)
- Given y=sinx+cosx+2x3, find dydx.
- Given f(x)=2xsecx, find dfdx.
- Given g(x)=tanxx, find dgdx.
- Given h(x)=cscxcotx, find dhdx.
- Given y=4sinx−3√x, find y′.
- Given f(x)=xcos2x, find f′(x).
- Given g(x)=secxcscx, find g′(x).
- Given h(x)=(x+1)tanx1+cotx, find h′(x).
- Given r=secθ1+tanθ, find drdθ.
- Given x=sin2t+cos2t, find dxdt.
- Given f(θ)=−3(sec2θ−tan2θ), find dfdθ.
- Given g(x)=1+xtanxsinxsecx, find dgdx.
- Given h(x)=2−cosxcscx(x2+1)cotx, find dhdx.
- Given y=3xsinx, find y′ and y″.
- Given f(x) = 2\sec x - 5\tan x, find \dfrac{df}{dx} and \dfrac{d^2f}{dx^2}.
- Find the equation of the line tangent to the graph of g(x) = \sin x at x = \pi.
- Find the equation of the line tangent to the graph of h(x) = 3\csc x at x = \dfrac{\pi}{2}.
- Find the equation of the line tangent to the graph of y = \sec x + \tan x at x = -\dfrac{\pi}{4}.