Skip to main content
Mathematics LibreTexts

3.4: Derivatives of Trigonometric Functions

  • Page ID
    143972
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Given \(y = \sin x + \cos x + 2x^3\), find \(\dfrac{dy}{dx}\).
       
    2. Given \(f(x) = 2x\sec x\), find \(\dfrac{df}{dx}\).
       
    3. Given \(g(x) = \dfrac{\tan x}{x}\), find \(\dfrac{dg}{dx}\).
       
    4. Given \(h(x) = \csc x \cot x\), find \(\dfrac{dh}{dx}\).
       
    5. Given \(y = 4\sin x - 3\sqrt{x}\), find \(y'\).
       
    6. Given \(f(x) = x\cos^2 x\), find \(f'(x)\).
       
    7. Given \(g(x) = \dfrac{\sec x}{\csc x}\), find \(g'(x)\).
       
    8. Given \(h(x) = \dfrac{(x + 1)\tan x}{1 + \cot x}\), find \(h'(x)\).
       
    9. Given \(r = \dfrac{\sec \theta}{1 + \tan \theta}\), find \(\dfrac{dr}{d\theta}\).
       
    10. Given \(x = \sin^2 t + \cos^2 t\), find \(\dfrac{dx}{dt}\).
       
    11. Given \(f(\theta) = -3(\sec^2 \theta - \tan^2 \theta)\), find \(\dfrac{df}{d\theta}\).
       
    12. Given \(g(x) = \dfrac{1 + x\tan x}{\sin x \sec x}\), find \(\dfrac{dg}{dx}\).
       
    13. Given \(h(x) = \dfrac{2 - \cos x \csc x}{(x^2 + 1)\cot x}\), find \(\dfrac{dh}{dx}\).
       
    14. Given \(y = 3x\sin x\), find \(y'\) and \(y''\).
       
    15. Given \(f(x) = 2\sec x - 5\tan x\), find \(\dfrac{df}{dx}\) and \(\dfrac{d^2f}{dx^2}\).
       
    16. Find the equation of the line tangent to the graph of \(g(x) = \sin x\) at \(x = \pi\).
       
    17. Find the equation of the line tangent to the graph of \(h(x) = 3\csc x\) at \(x = \dfrac{\pi}{2}\).
       
    18. Find the equation of the line tangent to the graph of \(y = \sec x + \tan x\) at \(x = -\dfrac{\pi}{4}\).

    3.4: Derivatives of Trigonometric Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?