3.3: Differentiation Rules
( \newcommand{\kernel}{\mathrm{null}\,}\)
- Given f(x) = 14, find f'(x).
- Given g(x) = x^5, find g'(x).
- Given h(x) = \pi^3, find h'(x).
- Given y = 2x^3 + 7, find y'.
- Given f(x) = 3x^2 - x + 4, find \dfrac{df}{dx}.
- Given g(x) = \sqrt{2}x^5 - x^{\pi}, find \dfrac{dg}{dx}.
- Given h(x) = \dfrac{1}{2}(x^3 + x^2 + x + 1), find \dfrac{dh}{dx}.
- Given y = \dfrac{2x^3 - 4}{3}, find \dfrac{dy}{dx}.
- Given f(x) = 2x^{-3} + 4, find f'(x).
- Given g(x) = \dfrac{2}{x} + \dfrac{x}{2}, find g'(x).
- Given h(x) = \sqrt{x} - \dfrac{1}{\sqrt{x}}, find h'(x).
- Given y = \dfrac{1}{2x^{3/2}} + 2\sqrt{x}, find y'(x).
- Given f(x) = \sqrt[\leftroot{5} \uproot{2} \scriptstyle 3]{\dfrac{8}{x^2}}, find \dfrac{df}{dx}.
- Given g(t) = (t + 1)^2, find \dfrac{dg}{dt}.
- Given h(t) = -5\left(t^3 - 3t^2 - \dfrac{1}{t}\right), find \dfrac{dh}{dt}.
- Given x = \dfrac{t^2 + 1}{t}, find \dfrac{dx}{dt}.
- Given f(x) = (x^2 + 2x)(2x^3 + 3x^2 - 4), find f'(x).
- Given g(x) = (1 + x + x^2)(x^{-1} + x^{-2}), find g'(x).
- Given h(x) = \left(\dfrac{2}{x^3} - \dfrac{1}{x^5}\right)(x^2 - 5x + 1), find h'(x).
- Given y = \dfrac{1}{x^2 + 1}, find y'.
- Given f(x) = \dfrac{x^2 + \sqrt{x}}{x^2 - 1}, find \dfrac{df}{dx}.
- Given g(x) = 3 - \dfrac{2x^{-2} - 4}{x^4}, find \dfrac{dg}{dx}.
- Given h(x) = \dfrac{(x^2 + 1)(\sqrt{x} - 2)}{2x + 3}, find \dfrac{dh}{dx}.
- Given y = (1 - \sqrt{x})\left(\dfrac{x}{x + 1}\right), find \dfrac{dy}{dx}.
- Given f(x) = |x|, find f'(x). [Hint: Consider first the case where x > 0, then separately consider the case where x < 0. For each case, consider how |x| might be simplified.]
- Find the equation of the line tangent to the graph of g(x) = \dfrac{1}{x} at x = \dfrac{1}{2}.
- Find the equation of the line tangent to the graph of h(x) = \dfrac{x}{1 + x} at x = 1.
- Given f(x) = \dfrac{1}{6}x^3 - \dfrac{1}{2}x^2 + x - 4, find f'(x) and f''(x).
- Given y = \dfrac{x + 1}{x - 1}, find \dfrac{dy}{dx} and \dfrac{d^2y}{dx^2}.