Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

3.2: The Derivative as a Function

( \newcommand{\kernel}{\mathrm{null}\,}\)

  1. Use the definition of the derivative to differentiate f(x)=2.
     
  2. Use the definition of the derivative to differentiate g(x)=3x4.
     
  3. Use the definition of the derivative to differentiate h(x)=x2.
     
  4. Use the definition of the derivative to differentiate y=2x2x+4.
     
  5. Use the definition of the derivative to differentiate f(t)=t35.
     
  6. Use the definition of the derivative to differentiate g(t)=t.
     
  7. Use the definition of the derivative to differentiate h(t)=23t.
     
  8. Use the definition of the derivative to differentiate y=1x2.
     
  9. Use the definition of the derivative to differentiate f(x)=1x2.
     
  10. Use the definition of the derivative to differentiate g(x)=1x+1.
     
  11. Use the definition of the derivative to differentiate h(x)={x,x0,x2,x>0.
    [Hint: Be careful at x=0.]
     
  12. Use the definition of the derivative to differentiate f(x)={x,x0,x2x,x>0.
    [Hint: Be careful at x=0.]
     
  13. The graph of g(x) is shown below. Sketch the graph of g(x).
    Graph of g(x) = 2.
     
  14. The graph of h(x) is shown below. Sketch the graph of h(x).
    Graph of h(x) = -0.5x + 1.
     
  15. The graph of f(x) is shown below. Sketch the graph of dfdx.
    Graph of f(x) = 0.5x^2 - x - 3.
     
  16. The graph of g(x) is shown below. Sketch the graph of dgdx.
    Graph of g(x) = -x * (x-1) * (x-3).
     
  17. The graph of h(x) is shown below. Sketch the graph of dhdx.
    Graph of h(x) = 0.2 * (x-2)^2 * (x+2)^2
     
  18. The graph of f(x) is shown below. Sketch the graph of f(x).
    Graph of f(x) = -0.6 * (0.25x^4 - 1.5x^2 - 2x).
     
  19. The graph of g(x) is shown below. Sketch the graph of g(x).
    Graph of g(x) = 3/(x^2 + 1).
     
  20. The graph of h(x) is shown below. Sketch the graph of h(x).
    Graph of h(x) = sin(x) on the interval from -2*pi to 2*pi.
     
  21. The graph of f(x) is shown below. Sketch the graph of dfdx.
    Graph of f(x) = |x|.
     
  22. The graph of g(x) is shown below. Sketch the graph of dgdx.
    Graph of g(x) = 2.5*x^(1/3).
     
  23. The graph of h(x) is shown below. Sketch the graph of dhdx.
    Graph of the function h(x). The function h(x) = x-1 for x < 0 and h(x) = x+1 for x >= 0.
     
  24. Use the graph of f(x) below to answer the following.
     
    1. List all values of x for which f(x) is not defined.
       
    2. List all values of x for which limtxf(t) does not exist.
       
    3. List all values of x for which f(x) is not continuous.
       
    4. List all values of x for which f(x) is not differentiable.
       
    The graph of the piecewise function f(x). Function f(x) = x^2 + 6.1097x + 9.7677 for x < -3; function f(x) = 1/|x|^(3/4) for -3 < x < 0; function f(x) = 1 at x = 0; function f(x) = 1/|x|^(3/4) for 0 < x <= 2; function f(x) = -4(x-2.25)^2 + 0.8446 for 2 < x < 3; and f(x) = -2(x-4)^(1/3) for x >= 3.

3.2: The Derivative as a Function is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?