Skip to main content
Mathematics LibreTexts

3.2: The Derivative as a Function

  • Page ID
    143970
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Use the definition of the derivative to differentiate \(f(x) = 2\).
       
    2. Use the definition of the derivative to differentiate \(g(x) = 3x - 4\).
       
    3. Use the definition of the derivative to differentiate \(h(x) = x^2\).
       
    4. Use the definition of the derivative to differentiate \(y = 2x^2 - x + 4\).
       
    5. Use the definition of the derivative to differentiate \(f(t) = t^3 - 5\).
       
    6. Use the definition of the derivative to differentiate \(g(t) = \sqrt{t}\).
       
    7. Use the definition of the derivative to differentiate \(h(t) = \sqrt{2 - 3t}\).
       
    8. Use the definition of the derivative to differentiate \(y = \dfrac{1}{x - 2}\).
       
    9. Use the definition of the derivative to differentiate \(f(x) = \dfrac{1}{x^2}\).
       
    10. Use the definition of the derivative to differentiate \(g(x) = \dfrac{1}{\sqrt{x + 1}}\).
       
    11. Use the definition of the derivative to differentiate \(h(x) = \left\{\begin{align*}
      -x, && x \leq 0, \\
      x^2, && x > 0.
      \end{align*}\right.\)
      [Hint: Be careful at \(x = 0\).]
       
    12. Use the definition of the derivative to differentiate \(f(x) = \left\{\begin{align*}
      -x, && x \leq 0, \\
      x^2 - x, && x > 0.
      \end{align*}\right.\)
      [Hint: Be careful at \(x = 0\).]
       
    13. The graph of \(g(x)\) is shown below. Sketch the graph of \(g'(x)\).
      Graph of g(x) = 2.
       
    14. The graph of \(h(x)\) is shown below. Sketch the graph of \(h'(x)\).
      Graph of h(x) = -0.5x + 1.
       
    15. The graph of \(f(x)\) is shown below. Sketch the graph of \(\dfrac{df}{dx}\).
      Graph of f(x) = 0.5x^2 - x - 3.
       
    16. The graph of \(g(x)\) is shown below. Sketch the graph of \(\dfrac{dg}{dx}\).
      Graph of g(x) = -x * (x-1) * (x-3).
       
    17. The graph of \(h(x)\) is shown below. Sketch the graph of \(\dfrac{dh}{dx}\).
      Graph of h(x) = 0.2 * (x-2)^2 * (x+2)^2
       
    18. The graph of \(f(x)\) is shown below. Sketch the graph of \(f'(x)\).
      Graph of f(x) = -0.6 * (0.25x^4 - 1.5x^2 - 2x).
       
    19. The graph of \(g(x)\) is shown below. Sketch the graph of \(g'(x)\).
      Graph of g(x) = 3/(x^2 + 1).
       
    20. The graph of \(h(x)\) is shown below. Sketch the graph of \(h'(x)\).
      Graph of h(x) = sin(x) on the interval from -2*pi to 2*pi.
       
    21. The graph of \(f(x)\) is shown below. Sketch the graph of \(\dfrac{df}{dx}\).
      Graph of f(x) = |x|.
       
    22. The graph of \(g(x)\) is shown below. Sketch the graph of \(\dfrac{dg}{dx}\).
      Graph of g(x) = 2.5*x^(1/3).
       
    23. The graph of \(h(x)\) is shown below. Sketch the graph of \(\dfrac{dh}{dx}\).
      Graph of the function h(x). The function h(x) = x-1 for x < 0 and h(x) = x+1 for x >= 0.
       
    24. Use the graph of \(f(x)\) below to answer the following.
       
      1. List all values of \(x\) for which \(f(x)\) is not defined.
         
      2. List all values of \(x\) for which \(\displaystyle \lim_{t \rightarrow x} f(t)\) does not exist.
         
      3. List all values of \(x\) for which \(f(x)\) is not continuous.
         
      4. List all values of \(x\) for which \(f(x)\) is not differentiable.
         
      The graph of the piecewise function f(x). Function f(x) = x^2 + 6.1097x + 9.7677 for x < -3; function f(x) = 1/|x|^(3/4) for -3 < x < 0; function f(x) = 1 at x = 0; function f(x) = 1/|x|^(3/4) for 0 < x <= 2; function f(x) = -4(x-2.25)^2 + 0.8446 for 2 < x < 3; and f(x) = -2(x-4)^(1/3) for x >= 3.

    3.2: The Derivative as a Function is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?