3.5: The Chain Rule
( \newcommand{\kernel}{\mathrm{null}\,}\)
- Given f(x)=(x+1)100, find f′(x).
- Given y=(7x2−12x+3)5, find y′.
- Given g(x)=sinx2, find g′(x).
- Given h(x)=sin2x, find h′(x).
- Given F(x)=√1−x2, find dFdx.
- Given y=√3x2+2x−4, find y′.
- Given f(x)=sec(tanx), find dfdx.
- Given g(x)=(2x3−1x)−3, find dgdx.
- Given h(x)=1(5x−3x5)4, find dhdx.
- Given y=√1+√x, find dydx.
- Given f(x)=cos√x, find f′(x).
- Given g(x)=sin(cos2x), find g′(x).
- Given h(x)=(csc(3x−2)+cot(3x−2))5, find h′(x).
- Given y=tan2(1x), find y′.
- Given f(x)=1√secx, find dfdx.
- Given g(x)=sin(x2cscx), find dgdx.
- Given h(x)=cos(x1+x), find dhdx.
- Given y=tan(x2+x)cot(2x−3), find dydx.
- Given f(x)=sin(2x3)1−cos(3x+4), find f′(x).
- Given g(x)=√2x3−cos2(4x), find g′(x).
- Given h(x)=sec5(√5x2−4), find h′(x).
- Given y(x)=sin(x2), find y″(x).
- Given f(x)=tan2x, find d2fdx2.
- Find the equation of the line tangent to the graph of y=√2x3−4x at x=2.