Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 11 results
  • https://math.libretexts.org/Courses/Western_Technical_College/PrePALS_Math_with_Business_Apps/03%3A_Decimals/3.04%3A_Dividing_Decimals
    In this and following sections we make use of the terms divisor, dividend, quotient, and remainder.
  • https://math.libretexts.org/Courses/Barton_Community_College/Book%3A_Technical_Mathematics_(Turner)/03%3A_Decimals/3.05%3A_Dividing_Decimals
    In this and following sections we make use of the terms divisor, dividend, quotient, and remainder.
  • https://math.libretexts.org/Courses/Coastline_College/Math_C097%3A_Support_for_Precalculus_Corequisite%3A_MATH_C170/1.04%3A_Polynomial_and_Rational_Functions/1.4.04%3A_Polynomial_Division
    Furthermore, the coefficients of the quotient polynomial match the coefficients of the first three terms in the last row, so we now take the plunge and write only the coefficients of the terms to get ...Furthermore, the coefficients of the quotient polynomial match the coefficients of the first three terms in the last row, so we now take the plunge and write only the coefficients of the terms to get To divide x3+4x25x14 by x2, we write 2 in the place of the divisor and the coefficients of x3+4x25x14 in for the dividend.
  • https://math.libretexts.org/Courses/Honolulu_Community_College/Math_75X%3A_Introduction_to_Mathematical_Reasoning_(Kearns)/03%3A_More_Types_of_Fractions-_Decimals_Percents_Ratios_and_Rates/3.04%3A_Copies_of_Decimals-_Multiplication_and_Division_with_Decimals_(Suggest_Going_Through_Fractionland)/3.4.02%3A_Dividing_Decimals
    In this and following sections we make use of the terms divisor, dividend, quotient, and remainder.
  • https://math.libretexts.org/Courses/Santiago_Canyon_College/HiSet_Mathematica_(Lopez)/05%3A_Multiplicacion_y_division_de_numeros_enteros/5.02%3A_Conceptos_de_division_de_numeros_enteros
    Veamos qué sucede cuando el dividendo (el número que se divide en) es cero, y el divisor (el número que hace la división) es cualquier número entero excepto cero. A partir de nuestro conocimiento de l...Veamos qué sucede cuando el dividendo (el número que se divide en) es cero, y el divisor (el número que hace la división) es cualquier número entero excepto cero. A partir de nuestro conocimiento de la multiplicación, podemos entender que si el producto de dos números enteros es cero, entonces uno o ambos números enteros deben ser cero. Dado que la división por cero no está definida, la calculadora debe registrar algún tipo de mensaje de error.
  • https://math.libretexts.org/Bookshelves/PreAlgebra/Fundamentals_of_Mathematics_(Burzynski_and_Ellis)/02%3A_Multiplication_and_Division_of_Whole_Numbers/2.02%3A_Concepts_of_Division_of_Whole_Numbers
    In the process of division, the concern is how many times one number is contained in another number. In division, the result of the division is called the quotient. Let's look at what happens when the...In the process of division, the concern is how many times one number is contained in another number. In division, the result of the division is called the quotient. Let's look at what happens when the dividend (the number being divided into) is zero, and the divisor (the number doing the dividing) is any whole number except zero. From our knowledge of multiplication, we can understand that if the product of two whole numbers is zero, then one or both of the whole numbers must be zero.
  • https://math.libretexts.org/Bookshelves/PreAlgebra/Prealgebra_(Arnold)/05%3A_Decimals/5.05%3A_Dividing_Decimals
    In this and following sections we make use of the terms divisor, dividend, quotient, and remainder.
  • https://math.libretexts.org/Courses/Highline_College/MATH_141%3A_Precalculus_I_(2nd_Edition)/03%3A_Polynomial_and_Rational_Functions/3.04%3A_Polynomial_Division
    Furthermore, the coefficients of the quotient polynomial match the coefficients of the first three terms in the last row, so we now take the plunge and write only the coefficients of the terms to get ...Furthermore, the coefficients of the quotient polynomial match the coefficients of the first three terms in the last row, so we now take the plunge and write only the coefficients of the terms to get To divide x3+4x25x14 by x2, we write 2 in the place of the divisor and the coefficients of x3+4x25x14 in for the dividend.
  • https://math.libretexts.org/Courses/Western_Technical_College/PrePALS_PreAlgebra/03%3A_Decimals/3.04%3A_Dividing_Decimals
    In this and following sections we make use of the terms divisor, dividend, quotient, and remainder.
  • https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/A_Spiral_Workbook_for_Discrete_Mathematics_(Kwong)/05%3A_Basic_Number_Theory/5.02%3A_Division_Algorithm
    When we divide a positive integer (the dividend) by another positive integer (the divisor), we obtain a quotient. We multiply the quotient to the divisor, and subtract the product from the dividend to...When we divide a positive integer (the dividend) by another positive integer (the divisor), we obtain a quotient. We multiply the quotient to the divisor, and subtract the product from the dividend to obtain the remainder. Such a division produces two results: a quotient and a remainder.
  • https://math.libretexts.org/Courses/Highline_College/MATHP_141%3A_Corequisite_Precalculus/04%3A_Polynomial_and_Rational_Functions/4.04%3A_Polynomial_Division
    Furthermore, the coefficients of the quotient polynomial match the coefficients of the first three terms in the last row, so we now take the plunge and write only the coefficients of the terms to get ...Furthermore, the coefficients of the quotient polynomial match the coefficients of the first three terms in the last row, so we now take the plunge and write only the coefficients of the terms to get To divide x3+4x25x14 by x2, we write 2 in the place of the divisor and the coefficients of x3+4x25x14 in for the dividend.

Support Center

How can we help?