Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

3: Multiple Integrals

The multiple integral is a generalization of the definite integral with one variable \[\int f(x) dx\] to functions of more than one real variable, for example, \[\iint f(x, y) \,dx\,dy\] for an indefinite double integral or \[\iiint f(x, y, z)\, dx\,dy\,dz\] for an indefinite  triplet integral. For definite multiple integrals, each variable can have different limits of integration.

Thumbnail: Double integral as volume under a surface \(z = 10 − x^2 − y^2/8\). The rectangular region at the bottom of the body is the domain of integration, while the surface is the graph of the two-variable function to be integrated. Image used with permission (Public Domain; Oleg Alexandrov).