# 4.7: Composite functions

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Similar to the way in which we used transformations to analyze the equation of a function, it is sometimes helpful to consider a given function as being several functions of the variable combined together.

For example, instead of thinking of the function $$f(x)=(2 x-7)^{3}$$ as being a single function, we can think of it as being two functions:
$\begin{array}{c} g(x)=2 x-7 \\ \text { and } \\ h(x)=x^{3} \end{array}$
Then $$f(x)$$ is the combination or "composition" of these two functions together. The first function multiplies the variable by $$2,$$ and subtracts 7 from the result. The second function takes this answer and raises it to the third power. The notation for the composition of functions is an open circle: 0

In the example above we would say that the function $$f(x)=(2 x-7)^{3}$$ is equivalent to the composition $$h \circ g(x)$$ or $$h(g(x))$$. The order of function composition is important. The function $$g \circ h(x)$$ would be equivalent to $$g(h(x)),$$ which would be
$\text { equal to } g\left(x^{3}\right)=2\left(x^{3}\right)-7=2 x^{3}-7$

Exercises 4.7
Find $$f \circ g(x)$$ and $$g \circ f(x)$$ for each of the following problems.
1) $$\quad f(x)=x^{2} \\ g(x)=x-1$$
2) $$\quad f(x)=|x-3| \\ g(x)=2 x+3$$

3) $$\quad f(x)=\frac{x}{x-2} \\ g(x)=\frac{x+3}{x}$$
4) $$\quad f(x)=x^{3}-1 \\ g(x)=\frac{1}{x^{3}+1$$

5) $$\quad f(x)=\sqrt{x+1} \\ g(x)=x^{4}-1$$
6) $$\quad f(x)=2 x^{3}-1 \\ g(x)=\sqrt[3]{\frac{x+1}{2}$$

Find functions $$f(x)$$ and $$g(x)$$ so that the given function $$h(x)=f \circ g(x)$$
7) $$\quad h(x)=(3 x+1)^{2}$$
8) $$\quad h(x)=\left(x^{2}-2 x\right)^{3}$$
9) $$\quad h(x)=\sqrt{1-4 x}$$
10) $$\quad h(x)=\sqrt[3]{x^{2}-1}$$
11) $$\quad h(x)=\left(\frac{x+1}{x-1}\right)^{2}$$
12) $$\quad h(x)=\left(\frac{1-2 x}{1+2 x}\right)^{3}$$
13) $$\quad h(x)=\left(3 x^{2}-1\right)^{-3}$$
14) $$\quad h(x)=\left(1+\frac{1}{x}\right)^{-2}$$
15) $$\quad h(x)=\sqrt{\frac{x}{x-1}}$$
16) $$\quad h(x)=\sqrt[3]{\frac{x-1}{x}}$$
17) $$\quad h(x)=\sqrt{\left(x^{2}-x-1\right)^{3}}$$
18) $$\quad h(x)=\sqrt[3]{\left(1-x^{4}\right)^{2}}$$
19) $$\quad h(x)=\frac{2}{\sqrt{4-x^{2}}}$$
20) $$\quad h(x)=-\left(\frac{3}{x-1}\right)^{5}$$

21) A spherical weather balloon is inflated so that the radius at time $$t$$ is given by the equation:
$r=f(t)=\frac{1}{2} t+2$
Assume that $$r$$ is in meters and $$t$$ is in seconds, with $$t=0$$ corresponding to the time the balloon begins to be inflated. If the volume of a sphere is given by the formula:
$v(r)=\frac{4}{3} \pi r^{3}$
Find $$V(f(t))$$ and use this to compute the time at which the volume of the balloon is $$36 \pi \mathrm{m}^{3}$$

4.7: Composite functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.