Skip to main content
Mathematics LibreTexts

4.7: Composite functions

  • Page ID
    40920
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Similar to the way in which we used transformations to analyze the equation of a function, it is sometimes helpful to consider a given function as being several functions of the variable combined together.

    For example, instead of thinking of the function \(f(x)=(2 x-7)^{3}\) as being a single function, we can think of it as being two functions:
    \[
    \begin{array}{c}
    g(x)=2 x-7 \\
    \text { and } \\
    h(x)=x^{3}
    \end{array}
    \]
    Then \(f(x)\) is the combination or "composition" of these two functions together. The first function multiplies the variable by \(2,\) and subtracts 7 from the result. The second function takes this answer and raises it to the third power. The notation for the composition of functions is an open circle: 0

    In the example above we would say that the function \(f(x)=(2 x-7)^{3}\) is equivalent to the composition \(h \circ g(x)\) or \(h(g(x))\). The order of function composition is important. The function \(g \circ h(x)\) would be equivalent to \(g(h(x)),\) which would be
    \[
    \text { equal to } g\left(x^{3}\right)=2\left(x^{3}\right)-7=2 x^{3}-7
    \]

    Exercises 4.7
    Find \(f \circ g(x)\) and \(g \circ f(x)\) for each of the following problems.
    1) \(\quad f(x)=x^{2} \\ g(x)=x-1\)
    2) \(\quad f(x)=|x-3| \\ g(x)=2 x+3\)

    3) \(\quad f(x)=\frac{x}{x-2} \\ g(x)=\frac{x+3}{x} \)
    4) \(\quad f(x)=x^{3}-1 \\ g(x)=\frac{1}{x^{3}+1\)

    5) \(\quad f(x)=\sqrt{x+1} \\ g(x)=x^{4}-1\)
    6) \(\quad f(x)=2 x^{3}-1 \\ g(x)=\sqrt[3]{\frac{x+1}{2}\)

    Find functions \(f(x)\) and \(g(x)\) so that the given function \(h(x)=f \circ g(x)\)
    7) \(\quad h(x)=(3 x+1)^{2}\)
    8) \(\quad h(x)=\left(x^{2}-2 x\right)^{3}\)
    9) \(\quad h(x)=\sqrt{1-4 x}\)
    10) \(\quad h(x)=\sqrt[3]{x^{2}-1}\)
    11) \(\quad h(x)=\left(\frac{x+1}{x-1}\right)^{2}\)
    12) \(\quad h(x)=\left(\frac{1-2 x}{1+2 x}\right)^{3}\)
    13) \(\quad h(x)=\left(3 x^{2}-1\right)^{-3}\)
    14) \(\quad h(x)=\left(1+\frac{1}{x}\right)^{-2}\)
    15) \(\quad h(x)=\sqrt{\frac{x}{x-1}}\)
    16) \(\quad h(x)=\sqrt[3]{\frac{x-1}{x}}\)
    17) \(\quad h(x)=\sqrt{\left(x^{2}-x-1\right)^{3}}\)
    18) \(\quad h(x)=\sqrt[3]{\left(1-x^{4}\right)^{2}}\)
    19) \(\quad h(x)=\frac{2}{\sqrt{4-x^{2}}}\)
    20) \(\quad h(x)=-\left(\frac{3}{x-1}\right)^{5}\)

    21) A spherical weather balloon is inflated so that the radius at time \(t\) is given by the equation:
    \[
    r=f(t)=\frac{1}{2} t+2
    \]
    Assume that \(r\) is in meters and \(t\) is in seconds, with \(t=0\) corresponding to the time the balloon begins to be inflated. If the volume of a sphere is given by the formula:
    \[
    v(r)=\frac{4}{3} \pi r^{3}
    \]
    Find \(V(f(t))\) and use this to compute the time at which the volume of the balloon is \(36 \pi \mathrm{m}^{3}\)


    4.7: Composite functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?