Skip to main content
Mathematics LibreTexts

4.7: Composite functions

  • Page ID
    40920
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Similar to the way in which we used transformations to analyze the equation of a function, it is sometimes helpful to consider a given function as being several functions of the variable combined together.

    For example, instead of thinking of the function \(f(x)=(2 x-7)^{3}\) as being a single function, we can think of it as being two functions:
    \[
    \begin{array}{c}
    g(x)=2 x-7 \\
    \text { and } \\
    h(x)=x^{3}
    \end{array}
    \]
    Then \(f(x)\) is the combination or "composition" of these two functions together. The first function multiplies the variable by \(2,\) and subtracts 7 from the result. The second function takes this answer and raises it to the third power. The notation for the composition of functions is an open circle: 0

    In the example above we would say that the function \(f(x)=(2 x-7)^{3}\) is equivalent to the composition \(h \circ g(x)\) or \(h(g(x))\). The order of function composition is important. The function \(g \circ h(x)\) would be equivalent to \(g(h(x)),\) which would be
    \[
    \text { equal to } g\left(x^{3}\right)=2\left(x^{3}\right)-7=2 x^{3}-7
    \]

    Exercises 4.7
    Find \(f \circ g(x)\) and \(g \circ f(x)\) for each of the following problems.
    1) \(\quad f(x)=x^{2} \\ g(x)=x-1\)
    2) \(\quad f(x)=|x-3| \\ g(x)=2 x+3\)

    3) \(\quad f(x)=\frac{x}{x-2} \\ g(x)=\frac{x+3}{x} \)
    4) \(\quad f(x)=x^{3}-1 \\ g(x)=\frac{1}{x^{3}+1\)

    5) \(\quad f(x)=\sqrt{x+1} \\ g(x)=x^{4}-1\)
    6) \(\quad f(x)=2 x^{3}-1 \\ g(x)=\sqrt[3]{\frac{x+1}{2}\)

    Find functions \(f(x)\) and \(g(x)\) so that the given function \(h(x)=f \circ g(x)\)
    7) \(\quad h(x)=(3 x+1)^{2}\)
    8) \(\quad h(x)=\left(x^{2}-2 x\right)^{3}\)
    9) \(\quad h(x)=\sqrt{1-4 x}\)
    10) \(\quad h(x)=\sqrt[3]{x^{2}-1}\)
    11) \(\quad h(x)=\left(\frac{x+1}{x-1}\right)^{2}\)
    12) \(\quad h(x)=\left(\frac{1-2 x}{1+2 x}\right)^{3}\)
    13) \(\quad h(x)=\left(3 x^{2}-1\right)^{-3}\)
    14) \(\quad h(x)=\left(1+\frac{1}{x}\right)^{-2}\)
    15) \(\quad h(x)=\sqrt{\frac{x}{x-1}}\)
    16) \(\quad h(x)=\sqrt[3]{\frac{x-1}{x}}\)
    17) \(\quad h(x)=\sqrt{\left(x^{2}-x-1\right)^{3}}\)
    18) \(\quad h(x)=\sqrt[3]{\left(1-x^{4}\right)^{2}}\)
    19) \(\quad h(x)=\frac{2}{\sqrt{4-x^{2}}}\)
    20) \(\quad h(x)=-\left(\frac{3}{x-1}\right)^{5}\)

    21) A spherical weather balloon is inflated so that the radius at time \(t\) is given by the equation:
    \[
    r=f(t)=\frac{1}{2} t+2
    \]
    Assume that \(r\) is in meters and \(t\) is in seconds, with \(t=0\) corresponding to the time the balloon begins to be inflated. If the volume of a sphere is given by the formula:
    \[
    v(r)=\frac{4}{3} \pi r^{3}
    \]
    Find \(V(f(t))\) and use this to compute the time at which the volume of the balloon is \(36 \pi \mathrm{m}^{3}\)


    4.7: Composite functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?