33.3: Evaluating Expressions with Exponents
( \newcommand{\kernel}{\mathrm{null}\,}\)
Lesson
Let's find the values of expressions with exponents.
Exercise 33.3.1: Revisiting the Cube
Based on the given information, what other measurements of the square and cube could we find?
Exercise 33.3.2: Calculating Surface Area
A cube has side length 10 inches. Jada says the surface area of the cube is 600 in2, and Noah says the surface area of the cube is 3,600 in2. Here is how each of them reasoned:
Jada’s Method:
6⋅1026⋅100600
Noah's Method:
6⋅1026023,600
Do you agree with either of them? Explain your reasoning.
Exercise 33.3.3: Row Game: Expression Explosion
Evaluate the expressions in one of the columns. Your partner will work on the other column. Check with your partner after you finish each row. Your answers in each row should be the same. If your answers aren’t the same, work together to find the error.
column A | column B |
---|---|
52+4 | 22+25 |
24⋅5 | 23⋅10 |
3⋅r2 | 12⋅22 |
20+23 | 1+33 |
9⋅21 | 3⋅61 |
19⋅(12)3 | 18⋅(13)2 |
Are you ready for more?
- Consider this equation:
. An example of 3 different whole numbers that could go in the boxes are 3, 4, and 5, since 32+42=52. (That is, 9+16=25.)
Can you find a different set of 3 whole numbers that make the equation true? - How many sets of 3 different whole numbers can you find?
- Can you find a set of 3 different whole numbers that make this equation true?
- How about this one?
Once you have worked on this a little while, you can understand a problem that is famous in the history of math. (Alas, this space is too small to contain it.) If you are interested, consider doing some further research on Fermat’s Last Theorem.
Summary
Exponents give us a new way to describe operations with numbers, so we need to understand how exponents get along with the other operations we know.
When we write 6⋅42, we want to make sure everyone agrees about how to evaluate this. Otherwise some people might multiply first and others compute the exponent first, and different people would get different values for the same expression!
Earlier we saw situations in which 6⋅42 represented the surface area of a cube with side lengths 4 units. When computing the surface area, we evaluate 42 first (or find the area of one face of the cube first) and then multiply the result by 6. In many other expressions that use exponents, the part with an exponent is intended to be evaluated first.
To make everyone agree about the value of expressions like 6⋅42, the convention is to evaluate the part of the expression with the exponent first. Here are a couple of examples:
6⋅4245+526⋅1645+259670
If we want to communicate that 6 and 4 should be multiplied first and then squared, then we can use parentheses to group parts together:
(6⋅4)2(45+5)22425025762,500
Practice
Exercise 33.3.4
Lin says, “I took the number 8, and then multiplied it by the square of 3.” Select all the expressions that equal Lin’s answer.
- 8⋅32
- (8⋅3)2
- 8⋅23
- 32⋅8
- 242
- 72
Exercise 33.3.5
Evaluate each expression.
- 7+23
- 9⋅31
- 20−24
- 2⋅62
- 8⋅(12)2
- 13⋅33
- (15⋅5)5
Exercise 33.3.6
Andre says, “I multiplied 4 by 5, then cubed the result.” Select all the expressions that equal Andre’s answer.
- 4⋅53
- (4⋅5)3
- (4⋅5)2
- 53⋅4
- 203
- 500
- 8,000
Exercise 33.3.7
Han has 10 cubes, each 5 inches on a side.
- Find the total volume of Han’s cubes. Express your answer as an expression using an exponent.
- Find the total surface area of Han’s cubes. Express your answer as an expression using an exponent.
Exercise 33.3.8
Priya says that 13⋅13⋅13⋅13=43. Do you agree with Priya? Explain or show your reasoning.
(From Unit 6.3.2)
Exercise 33.3.9
Answer each question. Show your reasoning.
- 125% of e is 30. What is e?
- 35% of f is 14. What is f?
(From Unit 6.2.2)
Exercise 33.3.10
Which expressions are solutions to the equation 2.4y=13.75? Select all that apply.
- 13.75−1.4
- 13.75⋅2.4
- 13.75÷2.4
- 13.752.4
- 2.4÷13.75
(From Unit 6.1.5)
Exercise 33.3.11
Jada explains how she finds 15⋅23:
“I know that ten 23s is 230, so five 23s will be half of 230, which is 115.
15 is 10 plus 5, so 15⋅23 is 230 plus 115, which is 345.”
- Do you agree with Jada? Explain.
- Draw a 15 by 23 rectangle. Partition the rectangle into two rectangles and label them to show Jada’s reasoning.
(From Unit 5.3.3)