Processing math: 54%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

7.E: Techniques of Integration (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

7.1: Integration by Parts

In using the technique of integration by parts, you must carefully choose which expression is u. For each of the following problems, use the guidelines in this section to choose u. Do not evaluate the integrals.

1) x3e2xdx

Answer
u=x3

2) x3ln(x)dx

3) y3cosydy

Answer
u=y3

4) x2arctanxdx

5) e3xsin(2x)dx

Answer
u=sin(2x)

In exercises 6 - 37, find the integral by using the simplest method. Not all problems require integration by parts.

6) vsinvdv

7) lnxdx (Hint: lnxdx is equivalent to 1ln(x)dx.)

Answer
lnxdx=x+xlnx+C

8) xcosxdx

9) tan1xdx

Answer
tan1xdx=xtan1x12ln(1+x2)+C

10) x2exdx

11) xsin(2x)dx

Answer
xsin(2x)dx=12xcos(2x)+14sin(2x)+C

12) xe4xdx

13) xexdx

Answer
xexdx=ex(1x)+C

14) xcos3xdx

15) x2cosxdx

Answer
x2cosxdx=2xcosx+(2+x2)sinx+C

16) xlnxdx

17) ln(2x+1)dx

Answer
ln(2x+1)dx=12(1+2x)(1+ln(1+2x))+C

18) x2e4xdx

19) exsinxdx

Answer
exsinxdx=12ex(cosx+sinx)+C

20) excosxdx

21) xex2dx

Answer
xex2dx=ex22+C

22) x2exdx

23) sin(ln(2x))dx

Answer
sin(ln(2x))dx=12xcos[ln(2x)]+12xsin[ln(2x)]+C

24) cos(lnx)dx

25) (lnx)2dx

Answer
(lnx)2dx=2x2xlnx+x(lnx)2+C

26) ln(x2)dx

27) x2lnxdx

Answer
x2lnxdx=x39+13x3lnx+C

28) sin1xdx

29) cos1(2x)dx

Answer
cos1(2x)dx=1214x2+xcos1(2x)+C

30) xarctanxdx

31) x2sinxdx

Answer
x2sinxdx=(2+x2)cosx+2xsinx+C

32) x3cosxdx

33) x3sinxdx

Answer
x3sinxdx=x(6+x2)cosx+3(2+x2)sinx+C

34) x3exdx

35) xsec1xdx

Answer
xsec1xdx=12x(11x2+xsec1x)+C

36) xsec2xdx

37) xcoshxdx

Answer
xcoshxdx=coshx+xsinhx+C

In exercises 38 - 46, compute the definite integrals. Use a graphing utility to confirm your answers.

38) 11/elnxdx

39) 10xe2xdx (Express the answer in exact form.)

Answer
10xe2xdx=1434e2

40) 10exdx(letu=x)

41) e1ln(x2)dx

Answer
e1ln(x2)dx=2

42) π0xcosxdx

43) ππxsinxdx (Express the answer in exact form.)

Answer
ππxsinxdx=2π

44) 30ln(x2+1)dx (Express the answer in exact form.)

45) π/20x2sinxdx (Express the answer in exact form.)

Answer
π/20x2sinxdx=2+π

46) 10x5xdx (Express the answer using five significant digits.)

47) Evaluate cosxln(sinx)dx

Answer
cosxln(sinx)dx=sin(x)+ln[sin(x)]sinx+C

In exercises 48 - 50, derive the following formulas using the technique of integration by parts. Assume that n is a positive integer. These formulas are called reduction formulas because the exponent in the x term has been reduced by one in each case. The second integral is simpler than the original integral.

48) xnexdx=xnexnxn1exdx

49) xncosxdx=xnsinxnxn1sinxdx

Answer
Answers vary

50) xnsinxdx=______

51) Integrate 2x2x3dx using two methods:

a. Using parts, letting dv=2x3dx

b. Substitution, letting u=2x3

Answer
a. 2x2x3dx=25(1+x)(3+2x)3/2+C
b. 2x2x3dx=25(1+x)(3+2x)3/2+C

 

In exercises 52 - 57, state whether you would use integration by parts to evaluate the integral. If so, identify u and dv. If not, describe the technique used to perform the integration without actually doing the problem.

52) xlnxdx

53) ln2xxdx

Answer
Do not use integration by parts. Choose u to be lnx, and the integral is of the form u2du.

54) xexdx

55) xex23dx

Answer
Do not use integration by parts. Let u=x23, and the integral can be put into the form eudu.

56) x2sinxdx

57) x2sin(3x3+2)dx

Answer
Do not use integration by parts. Choose u to be u=3x3+2 and the integral can be put into the form sin(u)du.

 

In exercises 58-59, sketch the region bounded above by the curve, the x-axis, and x=1, and find the area of the region. Provide the exact form or round answers to the number of places indicated.

58) y=2xex (Approximate answer to four decimal places.)

59) y=exsin(πx) (Approximate answer to five decimal places.)

Answer
The area under graph is 0.39535units2.
This figure is the graph of y=e^-x sin(pi*x). The curve begins in the third quadrant at x=0.5, increases through the origin, reaches a high point between 0.5 and 0.75, then decreases, passing through x=1.

 

In exercises 60 - 61, find the volume generated by rotating the region bounded by the given curves about the specified line. Express the answers in exact form or approximate to the number of decimal places indicated.

60) y=sinx,y=0,x=2π,x=3π; about the y-axis (Express the answer in exact form.)

61) y=ex,y=0,x=1,x=0; about x=1 (Express the answer in exact form.)

Answer
V=2πeunits3

 

62) A particle moving along a straight line has a velocity of v(t)=t2et after t sec. How far does it travel in the first 2 sec? (Assume the units are in feet and express the answer in exact form.)

63) Find the area under the graph of y=sec3x from x=0 to x=1. (Round the answer to two significant digits.)

Answer
A=2.05units2

64) Find the area between y=(x2)ex and the x-axis from x=2 to x=5. (Express the answer in exact form.)

65) Find the area of the region enclosed by the curve y=xcosx and the x-axis for 11π2x13π2. (Express the answer in exact form.)

Answer
A=12πunits2

66) Find the volume of the solid generated by revolving the region bounded by the curve y=lnx, the x-axis, and the vertical line x=e2 about the x-axis. (Express the answer in exact form.)

67) Find the volume of the solid generated by revolving the region bounded by the curve y=4cosx and the x-axis, π2x3π2, about the x-axis. (Express the answer in exact form.)

Answer
V=8π2units3

68) Find the volume of the solid generated by revolving the region in the first quadrant bounded by y=ex and the x-axis, from x=0 to x=ln(7), about the y-axis. (Express the answer in exact form.)

69) What is the volume of the Bundt cake that comes from rotating y=sinx around the y-axis from x=0 to x=π?

alt

Answer
V=2π2 units3

7.2: Trigonometric Integrals

Fill in the blank to make a true statement.

1) sin2x+_______=1

Answer
cos2x

2) sec2x1=_______

Answer
tan2x

Use an identity to reduce the power of the trigonometric function to a trigonometric function raised to the first power.

3) sin2x=_______

Answer
1cos(2x)2

4) cos2x=_______

Answer
1+cos(2x)2

 

Evaluate each of the following integrals by u-substitution.

5) sin3xcosxdx

Answer
sin3xcosxdx=sin4x4+C

6) cosxsinxdx

7) tan5(2x)sec2(2x)dx

Answer
tan5(2x)sec2(2x)dx=112tan6(2x)+C

8) sin7(2x)cos(2x)dx

9) tan(x2)sec2(x2)dx

Answer
tan(x2)sec2(x2)dx=tan2(x2)+C

10) tan2xsec2xdx

 

Compute the following integrals using the guidelines for integrating powers of trigonometric functions. Use a CAS to check the solutions. (Note: Some of the problems may be done using techniques of integration learned previously.)

11) sin3xdx

Answer
sin3xdx=3cosx4+112cos(3x)+C=cosx+cos3x3+C

12) cos3xdx

13) sinxcosxdx

Answer
sinxcosxdx=12cos2x+C

14) cos5xdx

15) sin5xcos2xdx

Answer
sin5xcos2xdx=5cosx641192cos(3x)+3320cos(5x)1448cos(7x)+C

16) sin3xcos3xdx

17) sinxcosxdx

Answer
sinxcosxdx=23(sinx)3/2+C

18) sinxcos3xdx

19) secxtanxdx

Answer
secxtanxdx=secx+C

20) tan(5x)dx

21) tan2xsecxdx

Answer
tan2xsecxdx=12secxtanx12ln(secx+tanx)+C

22) tanxsec3xdx

23) sec4xdx

Answer
sec4xdx=2tanx3+13sec2xtanx=tanx+tan3x3+C

24) cotxdx

25) cscxdx

Answer
cscxdx=ln|cotx+cscx|+C

26) tan3xsecxdx

 

For exercises 27 - 28, find a general formula for the integrals.

27) sin2axcosaxdx

Answer
sin2axcosaxdx=sin3(ax)3a+C

28) sinaxcosaxdx.

 

Use the double-angle formulas to evaluate the integrals in exercises 29 - 34.

29) π0sin2xdx

Answer
π0sin2xdx=π2

30) π0sin4xdx

31) cos23xdx

Answer
cos23xdx=x2+112sin(6x)+C

32) sin2xcos2xdx

33) sin2xdx+cos2xdx

Answer
sin2xdx+cos2xdx=x+C

34) sin2xcos2(2x)dx

 

For exercises 35 - 43, evaluate the definite integrals. Express answers in exact form whenever possible.

35) 2π0cosxsin2xdx

Answer
2π0cosxsin2xdx=0

36) π0sin3xsin5xdx

37) π0cos(99x)sin(101x)dx

Answer
π0cos(99x)sin(101x)dx=0

38) ππcos2(3x)dx

39) 2π0sinxsin(2x)sin(3x)dx

Answer
2π0sinxsin(2x)sin(3x)dx=0

40) 4π0cos(x/2)sin(x/2)dx

41) π/3π/6cos3xsinxdx (Round this answer to three decimal places.)

Answer
π/3π/6cos3xsinxdx0.239

42) π/3π/3sec2x1dx

43) π/201cos(2x)dx

Answer
π/201cos(2x)dx=2

 

44) Find the area of the region bounded by the graphs of the equations y=sinx,y=sin3x,x=0, and x=π2.

45) Find the area of the region bounded by the graphs of the equations y=cos2x,y=sin2x,x=π4, and x=π4.

Answer
A=1unit2

46) A particle moves in a straight line with the velocity function v(t)=sin(ωt)cos2(ωt). Find its position function x=f(t) if f(0)=0.

47) Find the average value of the function f(x)=sin2xcos3x over the interval [π,π].

Answer
0

 

For exercises 48 - 49, solve the differential equations.

48) dydx=sin2x. The curve passes through point (0,0).

49) dydθ=sin4(πθ)

Answer
f(x)=3θ814πsin(2πθ)+132πsin(4πθ)+C

 

50) Find the length of the curve y=ln(cscx),forπ4xπ2.

51) Find the length of the curve y=ln(sinx),forπ3xπ2.

Answer
s=ln(3)

52) Find the volume generated by revolving the curve y=cos(3x) about the x-axis, for 0xπ36.

 

For exercises 53 - 54, use this information: The inner product of two functions f and g over [a,b] is defined by f(x)g(x)=f,g=bafgdx. Two distinct functions f and g are said to be orthogonal if f,g=0.

53) Show that sin(2x),cos(3x) are orthogonal over the interval [π,π].

Answer
ππsin(2x)cos(3x)dx=0

54) Evaluate ππsin(mx)cos(nx)dx.

 

55) Integrate y=tanxsec4x.

Answer
y=tanxsec4xdx=23(tanx)3/2+27(tanx)7/2+C=221(tanx)3/2[7+3tan2x]+C

 

For each pair of integrals in exercises 56 - 57, determine which one is more difficult to evaluate. Explain your reasoning.

56) sin456xcosxdx or sin2xcos2xdx

57) tan350xsec2xdx or tan350xsecxdx

Answer
The second integral is more difficult because the first integral is simply a u-substitution type.

 

7.3: Trigonometric Substitution

Simplify the expressions in exercises 1 - 5 by writing each one using a single trigonometric function.

1) 44sin2θ

2) 9sec2θ9

Answer
9sec2θ9=9tan2θ

3) a2+a2tan2θ

4) a2+a2sinh2θ

Answer
a2+a2sinh2θ=a2cosh2θ

5) 16cosh2θ16

 

Use the technique of completing the square to express each trinomial in exercises 6 - 8 as the square of a binomial.

6) 4x24x+1

Answer
4(x12)2

7) 2x28x+3

8) x22x+4

Answer
(x+1)2+5

 

In exercises 9 - 28, integrate using the method of trigonometric substitution. Express the final answer in terms of the original variable.

9) dx4x2

10) dxx2a2

Answer
dxx2a2=lnx+a2+x2+C

11) 4x2dx

12) dx1+9x2

Answer
dx1+9x2=13ln9x2+1+3x+C

13) x2dx1x2

14) dxx21x2

Answer
dxx21x2=1x2x+C

15) dx(1+x2)2

16) x2+9dx

Answer
x2+9dx=9[xx2+918+12ln|x2+93+x3|]+C

17) x225xdx

18) θ39θ2dθ

Answer
θ3dθ9θ2dθ=139θ2(18+θ2)+C

19) dxx6x2

20) x6x8dx

Answer
x6x8dx=(1+x2)(2+3x2)x6x815x3+C

21) dx(1+x2)3/2

22) dx(x29)3/2

Answer
dx(x29)3/2=x9x29+C

23) 1+x2xdx

24) x2x21dx

Answer
x2x21dx=12(lnx+x21+xx21)+C

25) x2x2+4dx

26) dxx2x2+1

Answer
dxx2x2+1=1+x2x+C

27) x21+x2dx

28) 11(1x2)3/2dx

Answer
11(1x2)3/2dx=18(x(52x2)1x2+3arcsinx)+C

 

In exercises 29 - 34, use the substitutions x=sinhθ,coshθ, or tanhθ. Express the final answers in terms of the variable x.

29) dxx21

30) dxx1x2

Answer
dxx1x2=lnxln1+1x2+C

31) x21dx

32) x21x2dx

Answer
x21x2dx=1+x2x+ln|x+1+x2|+C

33) dx1x2

34) 1+x2x2dx

Answer
1+x2x2dx=1+x2x+arcsinhx+C

 

Use the technique of completing the square to evaluate the integrals in exercises 35 - 39.

35) 1x26xdx

36) 1x2+2x+1dx

Answer
1x2+2x+1dx=11+x+C

37) 1x2+2x+8dx

38) 1x2+10xdx

Answer
1x2+10xdx=sin1(x55)+C

39) 1x2+4x12dx

 

 

40) Evaluate the integral without using calculus: 339x2dx.

Answer
339x2dx=9π2; area of a semicircle with radius 3

41) Find the area enclosed by the ellipse x24+y29=1.

42) Evaluate the integral dx1x2 using two different substitutions. First, let x=cosθ and evaluate using trigonometric substitution. Second, let x=sinθ and use trigonometric substitution. Are the answers the same?

Answer
dx1x2=arcsin(x)+C is the common answer.

43) Evaluate the integral dxxx21 using the substitution x=secθ. Next, evaluate the same integral using the substitution x=cscθ. Show that the results are equivalent.

44) Evaluate the integral xx2+1dx using the form 1udu. Next, evaluate the same integral using x=tanθ. Are the results the same?

Answer
xx2+1dx=12ln(1+x2)+C is the result using either method.

45) State the method of integration you would use to evaluate the integral xx2+1dx. Why did you choose this method?

46) State the method of integration you would use to evaluate the integral x2x21dx. Why did you choose this method?

Answer
Use trigonometric substitution. Let x=sec(θ).

47) Evaluate 11xx2+1dx

48) Find the length of the arc of the curve over the specified interval: y=lnx,[1,5]. Round the answer to three decimal places.

Answer
s=4.367 units

49) Find the surface area of the solid generated by revolving the region bounded by the graphs of y=x2,y=0,x=0, and x=2 about the x-axis. (Round the answer to three decimal places).

50) The region bounded by the graph of f(x)=11+x2 and the x-axis between x=0 and x=1 is revolved about the x-axis. Find the volume of the solid that is generated.

Answer
V=(π28+π4)units3

 

In exercises 51 - 52, solve the initial-value problem for y as a function of x.

51) (x2+36)dydx=1,y(6)=0

52) (64x2)dydx=1,y(0)=3

Answer
y=116ln|x+8x8|+3

 

53) Find the area bounded by y=2644x2,x=0,y=0, and x=2.

54) An oil storage tank can be described as the volume generated by revolving the area bounded by y=1664+x2,x=0,y=0,x=2 about the x-axis. Find the volume of the tank (in cubic meters).

Answer
V=24.6 m3

55) During each cycle, the velocity v (in feet per second) of a robotic welding device is given by v=2t144+t2, where t is time in seconds. Find the expression for the displacement s (in feet) as a function of t if s=0 when t=0.

56) Find the length of the curve y=16x2 between x=0 and x=2.

Answer
s=2π3 units

 

7.4: Partial Fractions

Use partial fraction decomposition (or a simpler technique) to express the rational function as a sum or difference of two or more simpler rational expressions.

1) 1(x3)(x2)

2) x2+1x(x+1)(x+2)

Answer
x2+1x(x+1)(x+2)=2x+1+52(x+2)+12x

3) 1x3x

4) 3x+1x2

Answer
3x+1x2=1x2+3x

5) 3x2x2+1 (Hint: Use long division first.)

6) 2x4x22x

Answer
2x4x22x=2x2+4x+8+16x2

7) 1(x1)(x2+1)

8) 1x2(x1)

Answer
1x2(x1)=1x21x+1x1

9) xx24

10) 1x(x1)(x2)(x3)

Answer
1x(x1)(x2)(x3)=12(x2)+12(x1)16x+16(x3)

11) 1x41=1(x+1)(x1)(x2+1)

12) 3x2x31=3x2(x1)(x2+x+1)

Answer
3x2x31=1x1+2x+1x2+x+1

13) 2x(x+2)2

14) 3x4+x3+20x2+3x+31(x+1)(x2+4)2

Answer
3x4+x3+20x2+3x+31(x+1)(x2+4)2=2x+1+xx2+41(x2+4)2

 

In exercises 15 - 25, use the method of partial fractions to evaluate each of the following integrals.

15) dx(x3)(x2)

16) 3xx2+2x8dx

Answer
3xx2+2x8dx=2ln|x+4|+ln|x2|+C=ln|(x+4)2(x2)|+C

17) dxx3x

18) xx24dx

Answer
xx24dx=12ln|4x2|+C

19) dxx(x1)(x2)(x3)

20) 2x2+4x+22x2+2x+10dx

Answer
2x2+4x+22x2+2x+10dx=2(x+13arctan(1+x3))+C

21) dxx25x+6

22) 2xx2+xdx

Answer
2xx2+xdx=2ln|x|3ln|1+x|+C=ln|x2(1+x)3|+C

23) 2x2x6dx

24) dxx32x24x+8

Answer
dxx32x24x+8=116(42+xln|2+x|+ln|2+x|)+C=116(42+x+ln|x+2x2|)+C

25) \displaystyle ∫\frac{dx}{x^4−10x^2+9}

 

In exercises 26 - 29, evaluate the integrals with irreducible quadratic factors in the denominators.

26) \displaystyle ∫\frac{2}{(x−4)(x^2+2x+6)}\,dx

Answer
\displaystyle ∫\frac{2}{(x−4)(x^2+2x+6)}\,dx \quad = \quad \tfrac{1}{30}(−2\sqrt{5}\arctan\left[\frac{1+x}{\sqrt{5}}\right]+2\ln|−4+x|−\ln|6+2x+x^2|)+C

27) \displaystyle ∫\frac{x^2}{x^3−x^2+4x−4}\,dx

28) \displaystyle ∫\frac{x^3+6x^2+3x+6}{x^3+2x^2}\,dx

Answer
\displaystyle ∫\frac{x^3+6x^2+3x+6}{x^3+2x^2}\,dx \quad = \quad −\frac{3}{x}+4\ln|x+2|+x+C

29) \displaystyle ∫\frac{x}{(x−1)(x^2+2x+2)^2}\,dx

 

In exercises 30 - 32, use the method of partial fractions to evaluate the integrals.

30) \displaystyle ∫\frac{3x+4}{(x^2+4)(3−x)}\,dx

Answer
\displaystyle ∫\frac{3x+4}{(x^2+4)(3−x)}\,dx \quad = \quad −\ln|3−x|+\tfrac{1}{2}\ln|x^2+4|+C

31) \displaystyle ∫\frac{2}{(x+2)^2(2−x)}\,dx

32) \displaystyle ∫\frac{3x+4}{x^3−2x−4}\,dx (Hint: Use the rational root theorem.)

Answer
\displaystyle ∫\frac{3x+4}{x^3−2x−4}\,dx \quad = \quad \ln|x−2|−\tfrac{1}{2}\ln|x^2+2x+2|+C

 

In exercises 33 - 46, use substitution to convert the integrals to integrals of rational functions. Then use partial fractions to evaluate the integrals.

33) \displaystyle ∫^1_0\frac{e^x}{36−e^{2x}}\,dx (Give the exact answer and the decimal equivalent. Round to five decimal places.)

34) \displaystyle ∫\frac{e^x\,dx}{e^{2x}−e^x}\,dx

Answer
\displaystyle ∫\frac{e^x\,dx}{e^{2x}−e^x}\,dx \quad = \quad −x+\ln|1−e^x|+C

35) \displaystyle ∫\frac{\sin x\,dx}{1−\cos^2x}

36) \displaystyle ∫\frac{\sin x}{\cos^2 x+\cos x−6}\,dx

Answer
\displaystyle ∫\frac{\sin x}{\cos^2 x+\cos x−6}\,dx \quad = \quad \tfrac{1}{5}\ln\left|\frac{\cos x+3}{\cos x−2}\right|+C

37) \displaystyle ∫\frac{1−\sqrt{x}}{1+\sqrt{x}}\,dx

38) \displaystyle ∫\frac{dt}{(e^t−e^{−t})^2}

Answer
\displaystyle ∫\frac{dt}{(e^t−e^{−t})^2} \quad = \quad \frac{1}{2−2e^{2t}}+C

39) \displaystyle ∫\frac{1+e^x}{1−e^x}\,dx

40) \displaystyle ∫\frac{dx}{1+\sqrt{x+1}}

Answer
\displaystyle ∫\frac{dx}{1+\sqrt{x+1}} \quad = \quad 2\sqrt{1+x}−2\ln|1+\sqrt{1+x}|+C

41) \displaystyle ∫\frac{dx}{\sqrt{x}+\sqrt[4]{x}}

42) \displaystyle ∫\frac{\cos x}{\sin x(1−\sin x)}\,dx

Answer
\displaystyle ∫\frac{\cos x}{\sin x(1−\sin x)}\,dx \quad = \quad \ln\left|\frac{\sin x}{1−\sin x}\right|+C

43) \displaystyle ∫\frac{e^x}{(e^{2x}−4)^2}\,dx

44) \displaystyle ∫_1^2\frac{1}{x^2\sqrt{4−x^2}}\,dx

Answer
\displaystyle ∫_1^2\frac{1}{x^2\sqrt{4−x^2}}\,dx \quad = \quad \frac{\sqrt{3}}{4}

45) \displaystyle ∫\frac{1}{2+e^{−x}}\,dx

46) \displaystyle ∫\frac{1}{1+e^x}\,dx

Answer
\displaystyle ∫\frac{1}{1+e^x}\,dx \quad = \quad x−\ln(1+e^x)+C

 

In exercises 47 - 48, use the given substitution to convert the integral to an integral of a rational function, then evaluate.

47) \displaystyle ∫\frac{1}{t−\sqrt[3]{t}}\,dt; \quad t=x^3

48) \displaystyle ∫\frac{1}{\sqrt{x}+\sqrt[3]{x}}\,dx; \quad x=u^6

Answer
\displaystyle ∫\frac{1}{\sqrt{x}+\sqrt[3]{x}}\,dx \quad = \quad 6x^{1/6}−3x^{1/3}+2\sqrt{x}−6\ln(1+x^{1/6})+C

 

49) Graph the curve y=\dfrac{x}{1+x} over the interval [0,5]. Then, find the area of the region bounded by the curve, the x-axis, and the line x=4.

This figure is a graph of the function y = x/(1 + x). The graph is only in the first quadrant. It begins at the origin and increases into the first quadrant. The curve stops at x = 5.

50) Find the volume of the solid generated when the region bounded by y=\dfrac{1}{\sqrt{x(3−x)}}, \,y=0, \,x=1, and x=2 is revolved about the x-axis.

Answer
V = \frac{4}{3}π\text{arctanh}\,\left[\frac{1}{3}\right]=\frac{1}{3}π\ln 4 \, \text{units}^3

51) The velocity of a particle moving along a line is a function of time given by v(t)=\dfrac{88t^2}{t^2+1}. Find the distance that the particle has traveled after t=5 sec.

In exercises 52 - 54, solve the initial-value problem for x as a function of t.

52) (t^2−7t+12)\dfrac{dx}{dt}=1,\quad t>4,\, x(5)=0

Answer
x=−\ln|t−3|+\ln|t−4|+\ln 2 = \ln\left| \dfrac{2(t-4)}{t-3}\right|

53) (t+5)\dfrac{dx}{dt}=x^2+1, \quad t>−5,\,x(1)=\tan 1

54) (2t^3−2t^2+t−1)\dfrac{dx}{dt}=3,\quad x(2)=0

Answer
x=\ln|t−1|−\sqrt{2}\arctan(\sqrt{2}t)−\frac{1}{2}\ln(t^2+\frac{1}{2})+\sqrt{2}\arctan(2\sqrt{2})+\frac{1}{2}\ln 4.5

55) Find the x-coordinate of the centroid of the area bounded by y(x^2−9)=1, \, y=0, \,x=4, and x=5. (Round the answer to two decimal places.)

56) Find the volume generated by revolving the area bounded by y=\dfrac{1}{x^3+7x^2+6x},\, x=1,\, x=7, and y=0 about the y-axis.

Answer
V = \frac{2}{5}π\ln\frac{28}{13} \, \text{units}^3

57) Find the area bounded by y=\dfrac{x−12}{x^2−8x−20}, \,y=0, \,x=2, and x=4. (Round the answer to the nearest hundredth.)

58) Evaluate the integral \displaystyle ∫\frac{dx}{x^3+1}.

Answer
\displaystyle ∫\frac{dx}{x^3+1} \quad = \quad \frac{\arctan[\frac{−1+2x}{\sqrt{3}}]}{\sqrt{3}}+\frac{1}{3}\ln|1+x|−\frac{1}{6}\ln∣1−x+x^2∣+C

For problems 59 - 62, use the substitutions \tan(\frac{x}{2})=t, \,dx=\dfrac{2}{1+t^2}\,dt, \, \sin x=\dfrac{2t}{1+t^2}, and \cos x=\dfrac{1−t^2}{1+t^2}.

59) \displaystyle ∫\frac{dx}{3−5\sin x}

60) Find the area under the curve y=\dfrac{1}{1+\sin x} between x=0 and x=π. (Assume the dimensions are in inches.)

Answer
2.0 in.2

61) Given \tan(\frac{x}{2})=t, derive the formulas dx=\dfrac{2}{1+t^2}dt, \,\sin x=\dfrac{2t}{1+t^2}, and \cos x=\dfrac{1−t^2}{1+t^2}.

62) Evaluate \displaystyle ∫\frac{\sqrt[3]{x−8}}{x}\,dx.

Answer
\displaystyle ∫\frac{\sqrt[3]{x−8}}{x}\,dx \quad = \quad 3(−8+x)^{1/3}−2\sqrt{3}\arctan\left[\frac{−1+(−8+x)^{1/3}}{\sqrt{3}}\right]−2\ln\left[2+(−8+x)^{1/3}\right]+\ln\left[4−2(−8+x)^{1/3}+(−8+x)^{2/3}\right]+C

7.5: Other Strategies for Integration

Use a table of integrals to evaluate the following integrals.

1) \displaystyle ∫_0^4\frac{x}{\sqrt{1+2x}}\,dx

2) \displaystyle ∫\frac{x+3}{x^2+2x+2}\,dx

Answer
\displaystyle ∫\frac{x+3}{x^2+2x+2}\,dx = \tfrac{1}{2}\ln |x^2+2x+2|+2\arctan(x+1)+C

3) \displaystyle ∫x^3\sqrt{1+2x^2}\,dx

4) \displaystyle ∫\frac{1}{\sqrt{x^2+6x}}\,dx

Answer
\displaystyle ∫\frac{1}{\sqrt{x^2+6x}}\,dx = \cosh^{−1}\left(\frac{x+3}{3}\right)+C

5) \displaystyle ∫\frac{x}{x+1}\,dx

6) \displaystyle ∫x⋅2^{x^2}\,dx

Answer
\displaystyle ∫x⋅2^{x^2}\,dx = \frac{2^{x^2−1}}{\ln 2}+C

7) \displaystyle ∫\frac{1}{4x^2+25}\,dx

8) \displaystyle ∫\frac{dy}{\sqrt{4−y^2}}

Answer
\displaystyle ∫\frac{dy}{\sqrt{4−y^2}} = \arcsin\left(\frac{y}{2}\right)+C

9) \displaystyle ∫\sin^3(2x)\cos(2x)\,dx

10) \displaystyle ∫\csc(2w)\cot(2w)\,dw

Answer
\displaystyle ∫\csc(2w)\cot(2w)\,dw = −\tfrac{1}{2}\csc(2w)+C

11) \displaystyle ∫2^y\,dy

12) \displaystyle ∫^1_0\frac{3x}{\sqrt{x^2+8}}\,dx

Answer
\displaystyle ∫^1_0\frac{3x}{\sqrt{x^2+8}}\,dx = 9−6\sqrt{2}

13) \displaystyle ∫^{1/4}_{−1/4}\sec^2(πx)\tan(πx)\,dx

14) \displaystyle ∫^{π/2}_0\tan^2\left(\frac{x}{2}\right)\,dx

Answer
\displaystyle ∫^{π/2}_0\tan^2\left(\frac{x}{2}\right)\,dx = 2−\frac{π}{2}

15) \displaystyle ∫\cos^3x\,dx

16) \displaystyle ∫\tan^5(3x)\,dx

Answer
\displaystyle ∫\tan^5(3x)\,dx = \tfrac{1}{12}\tan^4(3x)−\tfrac{1}{6}\tan^2(3x)+\tfrac{1}{3}\ln|\sec 3x|+C

17) \displaystyle ∫\sin^2y\cos^3y\,dy

Use a CAS to evaluate the following integrals. Tables can also be used to verify the answers.

18) [T] \displaystyle ∫\frac{dw}{1+\sec\left(\frac{w}{2}\right)}

Answer
\displaystyle ∫\frac{dw}{1+\sec\left(\frac{w}{2}\right)} = 2\cot\left(\tfrac{w}{2}\right)−2\csc\left(\tfrac{w}{2}\right)+w+C

19) [T] \displaystyle ∫\frac{dw}{1−\cos(7w)}

20) [T] \displaystyle ∫^t_0\frac{dt}{4\cos t+3\sin t}

Answer
\displaystyle ∫^t_0\frac{dt}{4\cos t+3\sin t} = \tfrac{1}{5}\ln\Big|\frac{2(5+4\sin t−3\cos t)}{4\cos t+3\sin t}\Big|

21) [T] \displaystyle ∫\frac{\sqrt{x^2−9}}{3x}\,dx

22) [T] \displaystyle ∫\frac{dx}{x^{1/2}+x^{1/3}}

Answer
\displaystyle ∫\frac{dx}{x^{1/2}+x^{1/3}} = 6x^{1/6}−3x^{1/3}+2\sqrt{x}−6\ln[1+x^{1/6}]+C

23) [T] \displaystyle ∫\frac{dx}{x\sqrt{x−1}}

24) [T] \displaystyle ∫x^3\sin x\,dx

Answer
\displaystyle ∫x^3\sin x\,dx = −x^3\cos x+3x^2\sin x+6x\cos x−6\sin x+C

25) [T] \displaystyle ∫x\sqrt{x^4−9}\,dx

26) [T] \displaystyle ∫\frac{x}{1+e^{−x^2}}\,dx

Answer
\displaystyle ∫\frac{x}{1+e^{−x^2}}\,dx = \tfrac{1}{2}\left(x^2+\ln|1+e^{−x^2}|\right)+C

27) [T] \displaystyle ∫\frac{\sqrt{3−5x}}{2x}\,dx

28) [T] \displaystyle ∫\frac{dx}{x\sqrt{x−1}}

Answer
\displaystyle ∫\frac{dx}{x\sqrt{x−1}} = 2\arctan\big(\sqrt{x−1}\big)+C

29) [T] \displaystyle ∫e^x\cos^{−1}(e^x)\,dx

Use a calculator or CAS to evaluate the following integrals.

30) [T] \displaystyle ∫^{π/4}_0\cos 2x \, dx

Answer
\displaystyle ∫^{π/4}_0\cos 2x \, dx = 0.5=\frac{1}{2}

31) [T] \displaystyle ∫^1_0x⋅e^{−x^2}\,dx

32) [T] \displaystyle ∫^8_0\frac{2x}{\sqrt{x^2+36}}\,dx

Answer
\displaystyle ∫^8_0\frac{2x}{\sqrt{x^2+36}}\,dx = 8.0

33) [T] \displaystyle ∫^{2/\sqrt{3}}_0\frac{1}{4+9x^2}\,dx

34) [T] \displaystyle ∫\frac{dx}{x^2+4x+13}

Answer
\displaystyle ∫\frac{dx}{x^2+4x+13} = \tfrac{1}{3}\arctan\left(\tfrac{1}{3}(x+2)\right)+C

35) [T] \displaystyle ∫\frac{dx}{1+\sin x}

Use tables to evaluate the integrals. You may need to complete the square or change variables to put the integral into a form given in the table.

36) \displaystyle ∫\frac{dx}{x^2+2x+10}

Answer
\displaystyle ∫\frac{dx}{x^2+2x+10} = \tfrac{1}{3}\arctan\left(\frac{x+1}{3}\right)+C

37) \displaystyle ∫\frac{dx}{\sqrt{x^2−6x}}

38) \displaystyle ∫\frac{e^x}{\sqrt{e^{2x}−4}}\,dx

Answer
\displaystyle ∫\frac{e^x}{\sqrt{e^{2x}−4}}\,dx = \ln\left(e^x+\sqrt{4+e^{2x}}\right)+C

39) \displaystyle ∫\frac{\cos x}{\sin^2x+2\sin x}\,dx

40) \displaystyle ∫\frac{\arctan(x^3)}{x^4}\,dx

Answer
\displaystyle ∫\frac{\arctan(x^3)}{x^4}\,dx = \ln x−\tfrac{1}{6}\ln(x^6+1)−\frac{\arctan(x^3)}{3x^3}+C

41) \displaystyle ∫\frac{\ln|x|\arcsin\left(\ln|x|\right)}{x}\,dx

Use tables to perform the integration.

42) \displaystyle ∫\frac{dx}{\sqrt{x^2+16}}

Answer
\displaystyle ∫\frac{dx}{\sqrt{x^2+16}} = \ln |x|+\sqrt{16+x^2}∣+C

43) \displaystyle ∫\frac{3x}{2x+7}\,dx

44) \displaystyle ∫\frac{dx}{1−\cos 4x}

Answer
\displaystyle ∫\frac{dx}{1−\cos 4x} = −\frac{1}{4}\cot 2x+C

45) \displaystyle ∫\frac{dx}{\sqrt{4x+1}}

46) Find the area bounded by y(4+25x^2)=5,\;x=0,\;y=0, and x=4. Use a table of integrals or a CAS.

Answer
\frac{1}{2}\arctan 10 units²

47) The region bounded between the curve y=\dfrac{1}{\sqrt{1+\cos x}}, \; 0.3≤x≤1.1, and the x-axis is revolved about the x-axis to generate a solid. Use a table of integrals to find the volume of the solid generated. (Round the answer to two decimal places.)

48) Use substitution and a table of integrals to find the area of the surface generated by revolving the curve y=e^x,\; 0≤x≤3, about the x-axis. (Round the answer to two decimal places.)

Answer
1276.14 units²

49) [T] Use an integral table and a calculator to find the area of the surface generated by revolving the curve y=\dfrac{x^2}{2},\; 0≤x≤1, about the x-axis. (Round the answer to two decimal places.)

50) [T] Use a CAS or tables to find the area of the surface generated by revolving the curve y=\cos x,\; 0≤x≤\frac{π}{2}, about the x-axis. (Round the answer to two decimal places.)

Answer
7.21 units²

51) Find the length of the curve y=\dfrac{x^2}{4} over [0,8].

52) Find the length of the curve y=e^x over [0,\,\ln(2)].

Answer
\left(\sqrt{5}−\sqrt{2}+\ln\Big|\frac{2+2\sqrt{2}}{1+\sqrt{5}}\Big|\right) units

53) Find the area of the surface formed by revolving the graph of y=2\sqrt{x} over the interval [0,9] about the x-axis.

54) Find the average value of the function f(x)=\dfrac{1}{x^2+1} over the interval [−3,3].

Answer
\frac{1}{3}\arctan(3)≈0.416

55) Approximate the arc length of the curve y=\tan πx over the interval \left[0,\frac{1}{4}\right]. (Round the answer to three decimal places.)

Contributors

Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

7.6: Numerical Integration

In exercises 1 - 5, approximate the following integrals using either the midpoint rule, trapezoidal rule, or Simpson’s rule as indicated. (Round answers to three decimal places.)

1) \displaystyle ∫^2_1\frac{dx}{x}; trapezoidal rule; n=5

Answer
0.696

2) \displaystyle ∫^3_0\sqrt{4+x^3}\;dx; trapezoidal rule; n=6

3) \displaystyle ∫^3_0\sqrt{4+x^3}\;dx; Simpson’s rule; n=6

Answer
9.279

4) \displaystyle ∫^{12}_0x^2\;dx; midpoint rule; n=6

5) \displaystyle ∫^1_0\sin^2(\pi x)\;dx; midpoint rule; n=3

Answer
0.500

 

6) Use the midpoint rule with eight subdivisions to estimate \displaystyle ∫^4_2x^2\;dx.

7) Use the trapezoidal rule with four subdivisions to estimate \displaystyle ∫^4_2x^2\;dx.

Answer
T_4=18.75

8) Find the exact value of \displaystyle ∫^4_2x^2\;dx. Find the error of approximation between the exact value and the value calculated using the trapezoidal rule with four subdivisions. Draw a graph to illustrate.

 

Approximate the integral to four decimal places using the indicated rule.

9) \displaystyle ∫^1_0\sin^2(\pi x)\;dx; trapezoidal rule; n=6

Answer
0.5000

10) \displaystyle ∫^3_0\frac{1}{1+x^3}\;dx; trapezoidal rule; n=6

11) \displaystyle ∫^3_0\frac{1}{1+x^3}\;dx; Simpson’s rule; n=6

Answer
1.1614

12) \displaystyle ∫^{0.8}_0e^{−x^2}\;dx; trapezoidal rule; n=4

13) \displaystyle ∫^{0.8}_0e^{−x^2}\;dx; Simpson’s rule; n=4

Answer
0.6577

14) \displaystyle ∫^{0.4}_0\sin(x^2)\;dx; trapezoidal rule; n=4

15) \displaystyle ∫^{0.4}_0\sin(x^2)\;dx; Simpson’s rule; n=4

Answer
0.0213

16) \displaystyle ∫^{0.5}_{0.1}\frac{\cos x}{x}\;dx; trapezoidal rule; n=4

17) \displaystyle ∫^{0.5}_{0.1}\frac{\cos x}{x}\;dx; Simpson’s rule; n=4

Answer
1.5629

18) Evaluate \displaystyle ∫^1_0\frac{dx}{1+x^2} exactly and show that the result is π/4. Then, find the approximate value of the integral using the trapezoidal rule with n=4 subdivisions. Use the result to approximate the value of π.

19) Approximate \displaystyle ∫^4_2\frac{1}{\ln x}\;dx using the midpoint rule with four subdivisions to four decimal places.

Answer
1.9133

20) Approximate \displaystyle ∫^4_2\frac{1}{\ln x}\;dx using the trapezoidal rule with eight subdivisions to four decimal places.

21) Use the trapezoidal rule with four subdivisions to estimate \displaystyle ∫^{0.8}_0x^3\;dx to four decimal places.

Answer
T(4)=0.1088

22) Use the trapezoidal rule with four subdivisions to estimate \displaystyle ∫^{0.8}_0x^3\;dx. Compare this value with the exact value and find the error estimate.

23) Using Simpson’s rule with four subdivisions, find \displaystyle ∫^{π/2}_0\cos(x)\;dx.

Answer
\displaystyle ∫^{π/2}_0\cos(x)\;dx\approx \quad 1.0

24) Show that the exact value of \displaystyle ∫^1_0xe^{−x}\;dx=1−\frac{2}{e}. Find the absolute error if you approximate the integral using the midpoint rule with 16 subdivisions.

25) Given \displaystyle ∫^1_0xe^{−x}\;dx=1−\frac{2}{e}, use the trapezoidal rule with 16 subdivisions to approximate the integral and find the absolute error.

Answer
Approximate error is 0.000325.

26) Find an upper bound for the error in estimating \displaystyle ∫^3_0(5x+4)\;dx using the trapezoidal rule with six steps.

27) Find an upper bound for the error in estimating \displaystyle ∫^5_4\frac{1}{(x−1)^2}\;dx using the trapezoidal rule with seven subdivisions.

Answer
\frac{1}{7938}

28) Find an upper bound for the error in estimating \displaystyle ∫^3_0(6x^2−1)\;dx using Simpson’s rule with n=10 steps.

29) Find an upper bound for the error in estimating \displaystyle ∫^5_2\frac{1}{x−1}\;dx using Simpson’s rule with n=10 steps.

Answer
\frac{81}{25,000}

30) Find an upper bound for the error in estimating \displaystyle ∫^π_02x\cos(x)\;dx using Simpson’s rule with four steps.

31) Estimate the minimum number of subintervals needed to approximate the integral \displaystyle ∫^4_1(5x^2+8)\;dx with an error magnitude of less than 0.0001 using the trapezoidal rule.

Answer
475

32) Determine a value of n such that the trapezoidal rule will approximate \displaystyle ∫^1_0\sqrt{1+x^2}\;dx with an error of no more than 0.01.

33) Estimate the minimum number of subintervals needed to approximate the integral \displaystyle ∫^3_2(2x^3+4x)\;dx with an error of magnitude less than 0.0001 using the trapezoidal rule.

Answer
174

34) Estimate the minimum number of subintervals needed to approximate the integral \displaystyle ∫^4_3\frac{1}{(x−1)^2}\;dx with an error magnitude of less than 0.0001 using the trapezoidal rule.

35) Use Simpson’s rule with four subdivisions to approximate the area under the probability density function y=\frac{1}{\sqrt{2π}}e^{−x^2/2} from x=0 to x=0.4.

Answer
0.1544

36) Use Simpson’s rule with n=14 to approximate (to three decimal places) the area of the region bounded by the graphs of y=0, x=0, and x=π/2.

37) The length of one arch of the curve y=3\sin(2x) is given by L=∫^{π/2}_0\sqrt{1+36\cos^2(2x)}\;dx. Estimate L using the trapezoidal rule with n=6.

Answer
6.2807

38) The length of the ellipse x=a\cos(t),y=b\sin(t),0≤t≤2π is given by L=4a∫^{π/2}_0\sqrt{1−e^2\cos^2(t)}dt, where e is the eccentricity of the ellipse. Use Simpson’s rule with n=6 subdivisions to estimate the length of the ellipse when a=2 and e=1/3.

39) Estimate the area of the surface generated by revolving the curve y=\cos(2x),0≤x≤\frac{π}{4} about the x-axis. Use the trapezoidal rule with six subdivisions.

Answer
4.606

40) Estimate the area of the surface generated by revolving the curve y=2x^2, 0≤x≤3 about the x-axis. Use Simpson’s rule with n=6.

41) The growth rate of a certain tree (in feet) is given by y=\dfrac{2}{t+1}+e^{−t^2/2}, where t is time in years. Estimate the growth of the tree through the end of the second year by using Simpson’s rule, using two subintervals. (Round the answer to the nearest hundredth.)

Answer
3.41 ft

42) [T] Use a calculator to approximate \displaystyle ∫^1_0\sin(πx)\;dx using the midpoint rule with 25 subdivisions. Compute the relative error of approximation.

43) [T] Given \displaystyle ∫^5_1(3x^2−2x)\;dx=100, approximate the value of this integral using the midpoint rule with 16 subdivisions and determine the absolute error.

Answer
T_{16}=100.125; absolute error = 0.125

44) Given that we know the Fundamental Theorem of Calculus, why would we want to develop numerical methods for definite integrals?

45) The table represents the coordinates (x,​y) that give the boundary of a lot. The units of measurement are meters. Use the trapezoidal rule to estimate the number of square meters of land that is in this lot.

x y x y
0 125 600 95
100 125 700 88
200 120 800 75
300 112 900 35
400 90 1000 0
500 90    
Answer
about 89,250 m2

46) Choose the correct answer. When Simpson’s rule is used to approximate the definite integral, it is necessary that the number of partitions be____

a. an even number

b. odd number

c. either an even or an odd number

d. a multiple of 4

47) The “Simpson” sum is based on the area under a ____.

Answer
parabola

48) The error formula for Simpson’s rule depends on___.

a. f(x)

b. f′(x)

c. f^{(4)}(x)

d. the number of steps

7.7: Improper Integrals

In exercises 1 - 8, evaluate the following integrals. If the integral is not convergent, answer “It diverges.”

1) \displaystyle ∫^4_2\frac{dx}{(x−3)^2}

Answer
It diverges.

2) \displaystyle ∫^∞_0\frac{1}{4+x^2}\,dx

3) \displaystyle ∫^2_0\frac{1}{\sqrt{4−x^2}}\,dx

Answer
Converges to \frac{π}{2}

4) \displaystyle ∫^∞_1\frac{1}{x\ln x}\,dx

5) \displaystyle ∫^∞_1xe^{−x}\,dx

Answer
Converges to \frac{2}{e}

6) \displaystyle ∫^∞_{−∞}\frac{x}{x^2+1}\,dx

7) Without integrating, determine whether the integral \displaystyle ∫^∞_1\frac{1}{\sqrt{x^3+1}}\,dx converges or diverges by comparing the function f(x)=\dfrac{1}{\sqrt{x^3+1}} with g(x)=\dfrac{1}{\sqrt{x^3}}.

Answer
It converges.

8) Without integrating, determine whether the integral \displaystyle ∫^∞_1\frac{1}{\sqrt{x+1}}\,dx converges or diverges.

 

In exercises 9 - 25, determine whether the improper integrals converge or diverge. If possible, determine the value of the integrals that converge.

9) \displaystyle ∫^∞_0e^{−x}\cos x\,dx

Answer
Converges to \frac{1}{2}.

10) \displaystyle ∫^∞_1\frac{\ln x}{x}\,dx

11) \displaystyle ∫^1_0\frac{\ln x}{\sqrt{x}}\,dx

Answer
Converges to -4.

12) \displaystyle ∫^1_0\ln x\,dx

13) \displaystyle ∫^∞_{−∞}\frac{1}{x^2+1}\,dx

Answer
Converges to π.

14) \displaystyle ∫^5_1\frac{dx}{\sqrt{x−1}}

15) \displaystyle ∫^2_{−2}\frac{dx}{(1+x)^2}

Answer
It diverges.

16) \displaystyle ∫^∞_0e^{−x}\,dx

17) \displaystyle ∫^∞_0\sin x\,dx

Answer
It diverges.

18) \displaystyle ∫^∞_{−∞}\frac{e^x}{1+e^{2x}}\,dx

19) \displaystyle ∫^1_0\frac{dx}{\sqrt[3]{x}}

Answer
Converges to 1.5.

20) \displaystyle ∫^2_0\frac{dx}{x^3}

21) \displaystyle ∫^2_{−1}\frac{dx}{x^3}

Answer
It diverges.

22) \displaystyle ∫^1_0\frac{dx}{\sqrt{1−x^2}}

23) \displaystyle ∫^3_0\frac{1}{x−1}\,dx

Answer
It diverges.

24) \displaystyle ∫^∞_1\frac{5}{x^3}\,dx

25) \displaystyle ∫^5_3\frac{5}{(x−4)^2}\,dx

Answer
It diverges.

 

In exercises 26 and 27, determine the convergence of each of the following integrals by comparison with the given integral. If the integral converges, find the number to which it converges.

26) \displaystyle ∫^∞_1\frac{dx}{x^2+4x}; compare with \displaystyle ∫^∞_1\frac{dx}{x^2}.

27) \displaystyle ∫^∞_1\frac{dx}{\sqrt{x}+1}; compare with \displaystyle ∫^∞_1\frac{dx}{2\sqrt{x}}.

Answer
Both integrals diverge.

 

In exercises 28 - 38, evaluate the integrals. If the integral diverges, answer “It diverges.”

28) \displaystyle ∫^∞_1\frac{dx}{x^e}

29) \displaystyle ∫^1_0\frac{dx}{x^π}

Answer
It diverges.

30) \displaystyle ∫^1_0\frac{dx}{\sqrt{1−x}}

31) \displaystyle ∫^1_0\frac{dx}{1−x}

Answer
It diverges.

32) \displaystyle ∫^0_{−∞}\frac{dx}{x^2+1}

33) \displaystyle ∫^1_{−1}\frac{dx}{\sqrt{1−x^2}}

Answer
Converges to π.

34) \displaystyle ∫^1_0\frac{\ln x}{x}\,dx

35) \displaystyle ∫^e_0\ln(x)\,dx

Answer
Converges to 0.

36) \displaystyle ∫^∞_0xe^{−x}\,dx

37) \displaystyle ∫^∞_{−∞}\frac{x}{(x^2+1)^2}\,dx

Answer
Converges to 0.

38) \displaystyle ∫^∞_0e^{−x}\,dx

 

In exercises 39 - 44, evaluate the improper integrals. Each of these integrals has an infinite discontinuity either at an endpoint or at an interior point of the interval.

39) \displaystyle ∫^9_0\frac{dx}{\sqrt{9−x}}

Answer
Converges to 6.

40) \displaystyle ∫^1_{−27}\frac{dx}{x^{2/3}}

41) \displaystyle ∫^3_0\frac{dx}{\sqrt{9−x^2}}

Answer
Converges to \frac{π}{2}.

42) \displaystyle ∫^{24}_6\frac{dt}{t\sqrt{t^2−36}}

43) \displaystyle ∫^4_0x\ln(4x)\,dx

Answer
Converges to 8\ln(16)−4.

44) \displaystyle ∫^3_0\frac{x}{\sqrt{9−x^2}}\,dx

 

45) Evaluate \displaystyle ∫^t_{.5}\frac{dx}{\sqrt{1−x^2}}. (Be careful!) (Express your answer using three decimal places.)

Answer
Converges to about 1.047.

46) Evaluate \displaystyle ∫^4_1\frac{dx}{\sqrt{x^2−1}}. (Express the answer in exact form.)

47) Evaluate \displaystyle ∫^∞_2\frac{dx}{(x^2−1)^{3/2}}.

Answer
Converges to −1+\frac{2}{\sqrt{3}}.

48) Find the area of the region in the first quadrant between the curve y=e^{−6x} and the x-axis.

49) Find the area of the region bounded by the curve y=\dfrac{7}{x^2}, the x-axis, and on the left by x=1.

Answer
A = 7.0 units.2

50) Find the area under the curve y=\dfrac{1}{(x+1)^{3/2}}, bounded on the left by x=3.

51) Find the area under y=\dfrac{5}{1+x^2} in the first quadrant.

Answer
A = \dfrac{5π}{2} units.2

52) Find the volume of the solid generated by revolving about the x-axis the region under the curve y=\dfrac{3}{x} from x=1 to x=∞.

53) Find the volume of the solid generated by revolving about the y-axis the region under the curve y=6e^{−2x} in the first quadrant.

Answer
V = 3π\,\text{units}^3

54) Find the volume of the solid generated by revolving about the x-axis the area under the curve y=3e^{−x} in the first quadrant.

 

The Laplace transform of a continuous function over the interval [0,∞) is defined by \displaystyle F(s)=∫^∞_0e^{−sx}f(x)\,dx (see the Student Project). This definition is used to solve some important initial-value problems in differential equations, as discussed later. The domain of F is the set of all real numbers s such that the improper integral converges. Find the Laplace transform F of each of the following functions and give the domain of F.

55) f(x)=1

Answer
\dfrac{1}{s},\quad s>0

56) f(x)=x

57) f(x)=\cos(2x)

Answer
\dfrac{s}{s^2+4},\quad s>0

58) f(x)=e^{ax}

59) Use the formula for arc length to show that the circumference of the circle x^2+y^2=1 is .

Answer
Answers will vary.

 

A function is a probability density function if it satisfies the following definition: \displaystyle ∫^∞_{−∞}f(t)\,dt=1. The probability that a random variable x lies between a and b is given by \displaystyle P(a≤x≤b)=∫^b_af(t)\,dt.

60) Show that \displaystyle f(x)=\begin{cases}0,&\text{if}\,x<0\\7e^{−7x},&\text{if}\,x≥0\end{cases} is a probability density function.

61) Find the probability that x is between 0 and 0.3. (Use the function defined in the preceding problem.) Use four-place decimal accuracy.

Answer
0.8775

Chapter Review Exercises

In exercises 1 - 4, determine whether the statement is true or false. Justify your answer with a proof or a counterexample.

1) \displaystyle ∫e^x\sin(x)\,dx cannot be integrated by parts.

2) \displaystyle ∫\frac{1}{x^4+1}\,dx cannot be integrated using partial fractions.

Answer:
False

3) In numerical integration, increasing the number of points decreases the error.

4) Integration by parts can always yield the integral.

Answer:
False

 

In exercises 5 - 10, evaluate the integral using the specified method.

5) \displaystyle ∫x^2\sin(4x)\,dx, using integration by parts

6) \displaystyle ∫\frac{1}{x^2\sqrt{x^2+16}}\,dx, using trigonometric substitution

Answer:
\displaystyle ∫\frac{1}{x^2\sqrt{x^2+16}}\,dx = −\frac{\sqrt{x^2+16}}{16x}+C

7) \displaystyle ∫\sqrt{x}\ln x\,dx, using integration by parts

8) \displaystyle ∫\frac{3x}{x^3+2x^2−5x−6}\,dx, using partial fractions

Answer:
\displaystyle ∫\frac{3x}{x^3+2x^2−5x−6}\,dx = \frac{1}{10}\big(4\ln|2−x|+5\ln|x+1|−9\ln|x+3|\big)+C

9) \displaystyle ∫\frac{x^5}{(4x^2+4)^{5/2}}\,dx, using trigonometric substitution

10) \displaystyle ∫\frac{\sqrt{4−\sin^2(x)}}{\sin^2(x)}\cos(x)\,dx, using a table of integrals or a CAS

Answer:
\displaystyle ∫\frac{\sqrt{4−\sin^2(x)}}{\sin^2(x)}\cos(x)\,dx = −\frac{\sqrt{4−\sin^2(x)}}{\sin(x)}−\frac{x}{2}+C

 

In exercises 11 - 15, integrate using whatever method you choose.

11) \displaystyle ∫\sin^2 x\cos^2 x\,dx

12) \displaystyle ∫x^3\sqrt{x^2+2}\,dx

Answer:
\displaystyle ∫x^3\sqrt{x^2+2}\,dx = \frac{1}{15}(x^2+2)^{3/2}(3x^2−4)+C

13) \displaystyle ∫\frac{3x^2+1}{x^4−2x^3−x^2+2x}\,dx

14) \displaystyle ∫\frac{1}{x^4+4}\,dx

Answer:
\displaystyle ∫\frac{1}{x^4+4}\,dx = \frac{1}{16}\ln(\frac{x^2+2x+2}{x^2−2x+2})−\frac{1}{8}\tan^{−1}(1−x)+\frac{1}{8}\tan^{−1}(x+1)+C

15) \displaystyle ∫\frac{\sqrt{3+16x^4}}{x^4}\,dx

 

In exercises 16 - 18, approximate the integrals using the midpoint rule, trapezoidal rule, and Simpson’s rule using four subintervals, rounding to three decimals.

16) [T] \displaystyle ∫^2_1\sqrt{x^5+2}\,dx

Answer:
M_4=3.312,
T_4=3.354,
S_4=3.326

17) [T] \displaystyle ∫^{\sqrt{π}}_0e^{−\sin(x^2)}\,dx

18) [T] \displaystyle ∫^4_1\frac{\ln(1/x)}{x}\,dx

Answer:
M_4=−0.982,
T_4=−0.917,
S_4=−0.952

 

In exercises 19 - 20, evaluate the integrals, if possible.

19) \displaystyle ∫^∞_1\frac{1}{x^n}\,dx, for what values of n does this integral converge or diverge?

20) \displaystyle ∫^∞_1\frac{e^{−x}}{x}\,dx

Answer:
approximately 0.2194

 

In exercises 21 - 22, consider the gamma function given by \displaystyle Γ(a)=∫^∞_0e^{−y}y^{a−1}\,dy.

21) Show that \displaystyle Γ(a)=(a−1)Γ(a−1).

22) Extend to show that \displaystyle Γ(a)=(a−1)!, assuming a is a positive integer.

 

The fastest car in the world, the Bugati Veyron, can reach a top speed of 408 km/h. The graph represents its velocity.

This figure has a graph in the first quadrant. It increases to where x is approximately 03:00 mm:ss and then drops off steep. The maximum height of the graph, here the drop occurs is approximately 420 km/h.

23) [T] Use the graph to estimate the velocity every 20 sec and fit to a graph of the form v(t)=ae^{bx}\sin(cx)+d. (Hint: Consider the time units.)

24) [T] Using your function from the previous problem, find exactly how far the Bugati Veyron traveled in the 1 min 40 sec included in the graph.

Answer:
Answers may vary. Ex: 9.405 km

 

Contributors and Attributions

  • Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.


This page titled 7.E: Techniques of Integration (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax.

Support Center

How can we help?