Skip to main content
Mathematics LibreTexts

1.7: Tangent Planes and Normal Lines

  • Page ID
    602
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Tangent Planes

    Let \(z = f(x,y)\) be a function of two variables. We can define a new function \(F(x,y,z)\) of three variables by subtracting \(z\). This has the condition

    \[ F(x,y,z) = 0.\nonumber \]

    Now consider any curve defined parametrically by

    \[x = x(t), \;\;\; y = y(t), \;\;\; z = z(t).\nonumber \]

    We can write,

    \[F(x(t), y(t), z(t)) = 0.\nonumber \]

    Differentiating both sides with respect to \(t\), and using the chain rule gives

    \[F_x(x, y, z) x' + F_y(x, y, z) y' + F_z(x, y, z) z' = 0\nonumber \]

    Notice that this is the dot product of the gradient function and the vector \(\langle x',y',z'\rangle \),

    \[\nabla F \cdot \langle x', y', z'\rangle = 0.\nonumber \]

    In particular the gradient vector is orthogonal to the tangent line of any curve on the surface. This leads to:

    Definition: Tangent Plane

    Let \(F(x,y,z)\) define a surface that is differentiable at a point \((x_0,y_0,z_0)\), then the tangent plane to \(F ( x, y, z )\) at \(( x_0, y_0, z_0)\) is the plane with normal vector

    \[ \nabla \, F(x_0,y_0,z_0) \nonumber \]

    that passes through the point \((x_0,y_0,z_0)\). In particular, the equation of the tangent plane is

    \[ \nabla \, F(x_0,y_0,z_0) \cdot \langle x - x_0 , y - y_0 , z - z_0 \rangle = 0. \nonumber \]

    Example \(\PageIndex{1}\)

    Find the equation of the tangent plane to

    \[ z = 3x^2 - xy \nonumber \]

    at the point \((1,2,1)\).

    Solution

    We let

    \[F(x,y,z) = 3x^2 - xy - z\nonumber \]

    then

    \[\nabla F = \langle 6x - y, -x, -1\rangle . \nonumber \]

    At the point \((1,2,1)\), the normal vector is

    \[\nabla F(1,2,1) = \langle 4, -1, -1\rangle . \nonumber \]

    Now use the point normal formula for a plan

    \[\langle 4, -1, -1\rangle \cdot \langle x - 1, y - 2, z - 1\rangle = 0\nonumber \]

    or

    \[4(x - 1) - (y - 2) - (z - 1) = 0.\nonumber \]

    Finally we get

    \[ 4x - y - z = 1.\nonumber \]

    tanpla3.jpg

    Normal Lines

    Given a vector and a point, there is a unique line parallel to that vector that passes through the point. In the context of surfaces, we have the gradient vector of the surface at a given point. This leads to the following definition.

    Definition: Normal Line

    Let \(F(x,y,z)\) define a surface that is differentiable at a point \((x_0,y_0,z_0)\), then the normal line to \(F(x,y,z)\) at \((x_0,y_0,z_0)\) is the line with normal vector

    \[ \nabla \, F(x_0,y_0,z_0) .\nonumber \]

    that passes through the point \((x_0,y_0,z_0)\). In Particular the equation of the normal line is

    \[ x(t) = x_0 + F_x(x_0,y_0,z_0) t, \nonumber \]

    \[ y(t) = y_0 + F_y(x_0,y_0,z_0) t, \nonumber \]

    \[ z(t) = z_0 + F_z(x_0,y_0,z_0) t. \nonumber \]

    Example \(\PageIndex{2}\)

    Find the parametric equations for the normal line to

    \[ x^2yz - y + z - 7 = 0 \nonumber \]

    at the point \((1,2,3)\).

    Solution

    We compute the gradient:

    \[\nabla F = \langle 2xyz, x^2z - 1, x^2y + 1\rangle = \langle 12, 2, 3\rangle .\nonumber \]

    Now use the formula to find

    \[x(t) = 1 + 12t, \;\;\; y(t) = 2 + 2t, \;\;\; z(t) = 3 + 3t.\nonumber \]

    The diagram below displays the surface and the normal line.

    tanpla4.jpg

    Angle of Inclination

    Given a plane with normal vector n the angle of inclination, \(q\) is defined by

    \[\cos q = \dfrac{|\textbf{n} \cdot k|}{ ||\textbf{n} ||}. \nonumber \]

    More generally, if \( F(x,y,z) = 0 \) is a surface, then the angle of inclination at the point \((x_0,y_0,z_0)\) is defined by the angle of inclination of the tangent plane at the point with

    \[ \cos\,q = \dfrac{ | \nabla F(x_0, y_0, z_0) \cdot \textbf{k}| }{|| \nabla F(x_0, y_0, z_0)||}. \nonumber \]

    Example \(\PageIndex{3}\)

    Find the angle of inclination of

    \[ \dfrac{x^2}{4} + \dfrac{y^2}{4} + \dfrac{z^2}{8} = 1\nonumber \]

    at the point \((1,1,2)\).

    Solution

    First compute

    \[ \nabla F = \langle \dfrac{x}{2}, \dfrac{y}{2}, \dfrac{z}{4}\rangle .\nonumber \]

    Now plug in to get

    \[\nabla F(1,1,2) = \langle \dfrac{1}{2}, \dfrac{1}{2}, \dfrac{1}{2} \rangle .\nonumber \]

    We have

    \[|\langle \dfrac{1}{2} , \dfrac{1}{2} , \dfrac{1}{2} \rangle \cdot \hat{\textbf{k}} | = \dfrac{1}{2} .\nonumber \]

    Also,

    \[||\langle \dfrac{1}{2} , \dfrac{1}{2} , \dfrac{1}{2} \rangle || = \dfrac{\sqrt{3}}{2} .\nonumber \]

    Hence

    \[ \cos q = \dfrac{\frac{1}{2}}{( \frac{\sqrt{3}}{2} )} = \dfrac{1}{\sqrt{3}} . \nonumber \]

    So the angle of inclination is

    \[q = \cos^{-1}(\dfrac{1}{\sqrt{3}}) = 0.955 \text{ radians} .\nonumber \]

    The Tangent Line to a Curve

    Example \(\PageIndex{4}\)

    Find the tangent line to the curve of intersection of the sphere

    \[x^2 + y^2 + z^2 = 30\nonumber \]

    and the paraboloid

    \[z = x^2 + y^2\nonumber \]

    at the point \((1,2,5)\).

    Solution

    We find the gradient of the two surfaces at the point

    \[ \nabla(x^2 + y^2 + z^2) = \langle 2x, 2y, 2z\rangle = \langle 2, 4,10\rangle \nonumber \]

    and

    \[\nabla (x^2 + y^2 - z) = \langle 2x, 2y, -1\rangle = \langle 2, 4, -1\rangle .\nonumber \]

    These two vectors will both be perpendicular to the tangent line to the curve at the point, hence their cross product will be parallel to this tangent line. We compute

    \[ \begin{vmatrix} \hat{\textbf{i}} & \hat{\textbf{j}} & \hat{\textbf{k}} \\ 2 & 4 & 10 \\ 2 & 4 & -1 \end{vmatrix} = -44 \hat{\textbf{i}} + 22 \hat{\textbf{j}}. \nonumber \]

    Hence the equation of the tangent line is

    \[x(t) = 1 - 44t y(t) = 2 + 22t z(t) = 5.\nonumber \]

    Contributors and Attributions


    This page titled 1.7: Tangent Planes and Normal Lines is shared under a not declared license and was authored, remixed, and/or curated by Larry Green.

    • Was this article helpful?