1.4.E: Lines, Planes, and Hyperplanes (Exercises)
- Page ID
- 77685
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercise \(\PageIndex{1}\)
Find vector and parametric equations for the line in \(\mathbb{R}^2\) through \(\mathbf{p}=(2,3)\) in the direction of \(\mathbf{v}=(1,-2)\).
- Answer
-
Vector equation: \(\mathbf{y}=t(1,-2)+(2,3)=(t+2,-2 t+3)\)
Parametric equations:
\[\begin{aligned}
&x=t+2 \\
&y=-2 t+3
\end{aligned}\]
Exercise \(\PageIndex{2}\)
Find vector and parametric equations for the line in \(\mathbb{R}^4\) through \(\mathbf{p}=(1,-1,2,3)\) in the direction of \(\mathbf{v}=(-2,3,-4,1)\).
Exercise \(\PageIndex{3}\)
Find vector and parametric equations for the lines passing through the following pairs of points.
(a) \(\mathbf{p}=(-1,-3), \mathbf{q}=(4,2)\)
(b) \(\mathbf{p}=(2,1,3), \mathbf{q}=(-1,2,1)\)
(c) \(\mathbf{p}=(3,2,1,4), \mathbf{q}=(2,0,4,1)\)
(d) \(\mathbf{p}=(4,-3,2), \mathbf{q}=(1,-2,4)\)
- Answer
-
(a) Vector equation: \(\mathbf{y}=t(5,5)+(-1,-3)=(5 t-1,5 t-3)\)
Parametric equations: \[ \begin{aligned}
&x=5 t-1 \\
&y=5 t-3
\end{aligned} \](b) Vector equation: \(\mathbf{y}=t(3,1,-2)+(2,1,3)=(3 t+2, t+1,-2 t+3)\)
Parametric equations: \[ \begin{aligned}
&x=3 t+2 \\
&y=t+1 \\
&z=-2 t+3
\end{aligned} \](c) Vector equation: \(\mathbf{y}=t(1,2,-3,3)+(3,2,1,4)=(t+3,2 t+2,-3 t+1,3 t+4)\)
Parametric equations: \[ \begin{aligned}
w &=t+3 \\
x &=2 t+2 \\
y &=-3 t+1 \\
z &=3 t+4
\end{aligned} \](d) Vector equation: \(\mathbf{y}=t(3,-1,-2)+(4,-3,2)=(3 t+4,-t-3,-2 t+2)\)
Parametric equations: \[ \begin{aligned}
&x=3 t+4 \\
&y=-t-3 \\
&z=-2 t+2
\end{aligned} \]
Exercise \(\PageIndex{4}\)
Find the distance from the point \(\mathbf{q}=(1,3)\) to the line with vector equation \( \mathbf{y} = t(2,1) + (3,1) \).
Exercise \(\PageIndex{5}\)
Find the distance from the point \(\mathbf{q}=(1,3,-2)\) to the line with vector equation \( \mathbf{y} = t(2,-1,4)+(1,-2,-1) \).
- Answer
-
\(\frac{1085}{7}\)
Exercise \(\PageIndex{6}\)
Find the distance from the point \(\mathbf{r}=(-1,2,-3)\) to the line through the points \( \mathbf{p} = (1,0,1)\) and \(\mathbf{q}=(0,2,-1)\).
Exercise \(\PageIndex{7}\)
Find the distance from the point \(\mathbf{r}=(-1,-2,2,4)\) to the line through the points \(\mathbf{p}=(2,1,1,2)\) and \(\mathbf{q}=(1,2,-4,3)\).
- Answer
-
\(\frac{4697}{14}\)
Exercise \(\PageIndex{8}\)
Find vector and parametric equations for the plane in \(\mathbb{R}^3\) which contains the points \(\mathbf{p}=(1,3,-1)\), \(\mathbf{q}=(-2,1,1)\), and \(\mathbf{r}=(2,-3,2)\).
Exercise \(\PageIndex{9}\)
Find vector and parametric equations for the plane in \(\mathbb{R}^4\) which contains the points \(\mathbf{p}=(2,-3,4,-1)\), \(\mathbf{q}=(-1,3,2,-4)\), and \(\mathbf{r}=(2,-1,2,1)\).
- Answer
-
Vector equation: \(\mathbf{y}=t(-3,6,-2,-3)+s(0,2,-2,2)+(2,3,4,-1)\)
Parametric equations: \[ \begin{aligned}
&w=-3 t+2 \\
&x=6 t+2 s+3 \\
&y=-2 t-2 s+4 \\
&z=-3 t+2 s-1
\end{aligned} \]
Exercise \(\PageIndex{10}\)
Let \(P\) be the plane in \(\mathbb{R}^3\) with vector equation \(\mathbf{y}=t(1,2,1)+s(-2,1,3)+(1,0,1) \). Find the distance from the point \(\mathbf{q}=(1,3,1)\) to \(P\).
Exercise \(\PageIndex{11}\)
Let \(P\) be the plane in \(\mathbb{R}^4\) with vector equation \( \mathbf{y}=t(1,-2,1,4)+s(2,1,2,3)+(1,0,1,0) \). Find the distance from the point \(\mathbf{q}=(1,3,1,3)\) to \(P\).
- Answer
-
3
Exercise \(\PageIndex{12}\)
Find a normal vector and a normal equation for the line in \(\mathbb{R}^2\) with vector equation \(\mathbf{y}=t(1,2)+(1,-1) \).
Exercise \(\PageIndex{13}\)
Find a normal vector and a normal equation for the line in \(\mathbb{R}^2\) with vector equation \( \mathbf{y}=t(0,1)+(2,0) \).
- Answer
-
\(\mathbf{n}=(1,0)\)
Normal equation: \((1,0) \cdot(x-2, y)=0 \), or \( x=2\)
Exercise \(\PageIndex{14}\)
Find a normal vector and a normal equation for the plane in \(\mathbb{R}^3\) with vector equation \(\mathbf{y}=t(1,2,1)+s(3,1,-1)+(1,-1,1) \).
Exercise \(\PageIndex{15}\)
Find a normal vector and a normal equation for the line in \(\mathbb{R}^2\) which passes through the points \(\mathbf{p}=(3,2)\) and \(\mathbf{q}=(-1,3)\).
- Answer
-
\(\mathbf{n}=(1,4)\)
Normal equation: \((1,4) \cdot(x-3, y-2)=0, \text { or } x+4 y=11\)
Exercise \(\PageIndex{16}\)
Find a normal vector and a normal equation for the plane in \(\mathbb{R}^3\) which passes through the points \(\mathbf{p}=(1,2,-1)\), \(\mathbf{q}=(-1,3,1)\), and \(\mathbf{r}=(2,-2,2)\).
- Answer
-
\(\mathbf{n}=(11,8,7)\)
Normal equation: \((11,8,7) \cdot(x-1, y-2, z+1)=0, \text { or } 11 x+8 y+7 z=20\)
Exercise \(\PageIndex{17}\)
Find the distance from the point \(\mathbf{q}=(3,2)\) in \(\mathbb{R}^2\) to the line with equation \( x+2 y-3=0 \).
- Answer
-
\(\frac{4}{\sqrt{5}}\)
Exercise \(\PageIndex{18}\)
Find the distance from the point \(\mathbf{q}=(1,2,-1)\) in \(\mathbb{R}^3\) to the plane with equation \( x+2 y-3 x=4 \).
Exercise \(\PageIndex{19}\)
Find the distance from the point \(\mathbf{q}=(3,2,1,1)\) in \(\mathbb{R}^4\) to the hyperplane with equation \( 3 x+y-2 z+3 w=15 \).
- Answer
-
\(\frac{3}{\sqrt{23}}\)
Exercise \(\PageIndex{20}\)
Find the angle between the lines in \(\mathbb{R}^2\) with equations \(3 x+y=4 \) and \( x-y=5 \).
Exercise \(\PageIndex{21}\)
Find the angle between the planes in \(\mathbb{R}^3\) with equations \( 3 x-y+2 z=5 \) and \( x-2 y+z=4\).
- Answer
-
0.7017 radians
Exercise \(\PageIndex{22}\)
Find the angle between the hyperplanes in \(\mathbb{R}^4\) with equations \( w+x+y-z=3 \) and \( 2 w-x+2 y+z=6 \text { . } \)
Exercise \(\PageIndex{23}\)
Find an equation for a plane in \(\mathbb{R}^3\) orthogonal to the plane with equation \( x+2 y-3 z=4\) and passing through the point \(\mathbf{p}=(1,-1,2)\).
- Answer
-
\(2 x-y=3\) is the equation of one such plane.
Exercise \(\PageIndex{24}\)
Find an equation for the plane in \(\mathbb{R}^3\) which is parallel to the plane \(x-y+2 z=6 \) and passes through the point \(\mathbf{p}=(2,1,2)\).
Exercise \(\PageIndex{25}\)
Show that if \( \mathbf{x}\), \( \mathbf{y}\), and \( \mathbf{z}\) are vectors in \(\mathbb{R}^n\) with \(\mathbf{x} \perp \mathbf{y}\) and \(\mathbf{x} \perp \mathbf{z}\), then \(\mathbf{x} \perp(a \mathbf{y}+b \mathbf{z})\) for any scalars \(a\) and \(b\).
Exercise \(\PageIndex{26}\)
Find parametric equations for the line of intersection of the planes in \(\mathbb{R}^3\) with equations \( x+2 y-6 z=4 \) and \( 2 x-y+z=2 \).
Exercise \(\PageIndex{27}\)
Find parametric equations for the plane of intersection of the hyperplanes in \(\mathbb{R}^4\) with equations \( w-x+y+z=3\) and \( 2 w+4 x-y+2 z=8 \).
- Answer
-
\(y=2 t-\frac{2}{3}, z=-s-t+\frac{11}{3}\)
Exercise \(\PageIndex{28}\)
Let \(L\) be the line in \(\mathbb{R}^3\) with vector equation \( \mathbf{y}=t(1,2,-1)+(3,2,1) \) and let \(P\) be the plane in \(\mathbb{R}^3\) with equation \(x+2 y-3 z=8 \). Find the point where \(L\) intersects \(P\).
Exercise \(\PageIndex{29}\)
Let \(P\) be the plane in \(\mathbb{R}^n\) with vector equation \(\mathbf{y}=t \mathbf{v}+s \mathbf{w}+\mathbf{p} \). Let \(\mathbf{c}\) be the projection of \(\mathbf{w}\) onto \(\mathbf{v}\),
\[ \mathbf{a}=\frac{1}{\|v\|} \mathbf{v}, \nonumber \]
and
\[ \mathbf{b}=\frac{1}{\|\mathbf{w}-\mathbf{c}\|}(\mathbf{w}-\mathbf{c}). \nonumber \]
Show that \( \mathbf{y}=t \mathbf{a}+s \mathbf{b}+\mathbf{p} \) is also a vector equation for \(P\).