Skip to main content
Mathematics LibreTexts

1.6.E: Operations with Matrices (Exercises)

  • Page ID
    77687
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Exercise \(\PageIndex{1}\)

    Let \(M=\left[\begin{array}{rr}
    2 & 3 \\
    -2 & 1 \\
    4 & -1
    \end{array}\right]\) and \(N=\left[\begin{array}{rr}
    3 & -2 \\
    1 & 0 \\
    2 & -5
    \end{array}\right] \). Evaluate the following.

    (a) \(3M\)

    (b) \(M-N\)

    (c) \(2 M+N\)

    (d) \(2 N-6 M\)

    Answer

    (a) \(\left[\begin{array}{rr}
    6 & 9 \\
    -6 & 3 \\
    12 & -3
    \end{array}\right]\)

    (b) \(\left[\begin{array}{rr}
    -1 & 5 \\
    -3 & 1 \\
    2 & 4
    \end{array}\right]\)

    (c) \(\left[\begin{array}{rr}
    7 & 4 \\
    -3 & 2 \\
    10 & -7
    \end{array}\right]\)

    (d) \(\left[\begin{array}{cc}
    -14 & 18 \\
    -10 & 2 \\
    -4 & 28
    \end{array}\right]\)

    Exercise \(\PageIndex{2}\)

    Evaluate the following matrix products.

    (a) \(\left[\begin{array}{rr}
    3 & 2 \\
    -1 & 1
    \end{array}\right]\left[\begin{array}{l}
    2 \\
    3
    \end{array}\right]\)

    (b) \(\left[\begin{array}{rr}
    2 & -3 \\
    1 & 4
    \end{array}\right]\left[\begin{array}{rr}
    1 & 4 \\
    2 & -2
    \end{array}\right]\)

    (c) \(\left[\begin{array}{rrr}
    2 & 1 & 3 \\
    -3 & 2 & 1
    \end{array}\right]\left[\begin{array}{rrr}
    3 & 4 & -1 \\
    0 & 2 & 4 \\
    2 & 1 & -2
    \end{array}\right]\)

    (d) \(\left[\begin{array}{llll}
    1 & 2 & 3 & -1
    \end{array}\right]\left[\begin{array}{rr}
    2 & 1 \\
    3 & 1 \\
    -2 & 4 \\
    0 & -4
    \end{array}\right]\)

    Answer

    (a) \(\left[\begin{array}{c}
    12 \\
    1
    \end{array}\right]\)

    (b) \(\left[\begin{array}{rr}
    -4 & 14 \\
    9 & -4
    \end{array}\right]\)

    (c) \(\left[\begin{array}{ccr}
    12 & 13 & -4 \\
    -7 & -7 & 9
    \end{array}\right]\)

    (d) \(\left[\begin{array}{ll}
    2 & 19
    \end{array}\right]\)

    Exercise \(\PageIndex{3}\)

    Suppose \(L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\) and \(K: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\) are defined by

    \[ L(x, y, z)=(2 x+3 y, y-x+2 z, x+2 y-z) \nonumber \]

    and

    \[ K(x, y, z)=(2 x+4 y-3 z, x+y+z, 3 x-y+4 z). \nonumber \]

    Find the matrices for the following linear functions.

    (a) \(3 L\)

    (b) \(L+K\)

    (c) \(2 L-K\)

    (d) \(K+2 L\)

    (e) \(K \circ L\)

    (f) \(L \circ K\)

    Answer

    (a) \(\left[\begin{array}{rrr}
    6 & 9 & 0 \\
    -3 & 3 & 6 \\
    3 & 6 & -3
    \end{array}\right]\)

    (b) \(\left[\begin{array}{rrr}
    4 & 7 & -3 \\
    0 & 2 & 3 \\
    4 & 1 & 3
    \end{array}\right]\)

    (c) \(\left[\begin{array}{rrr}
    2 & 2 & 3 \\
    -3 & 1 & 3 \\
    -1 & 5 & -6
    \end{array}\right]\)

    (d) \(\left[\begin{array}{rcr}
    6 & 10 & -3 \\
    -1 & 3 & 5 \\
    5 & 3 & 2
    \end{array}\right]\)

    (e) \(\left[\begin{array}{ccc}
    -3 & 4 & 11 \\
    2 & 6 & 1 \\
    11 & 16 & -6
    \end{array}\right]\)

    (f) \(\left[\begin{array}{ccc}
    7 & 11 & -3 \\
    5 & -5 & 12 \\
    1 & 7 & -5
    \end{array}\right]\)

    Exercise \(\PageIndex{4}\)

    Let \(\mathbb{R}_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) be the linear function which rotates a vector in \(\mathbb{R}^{2}\) counterclockwise through an angle θ. In Section 1.5 we saw that

    \[ R_{\theta}(x, y)=\left[\begin{array}{rr}
    \cos (\theta) & -\sin (\theta) \\
    \sin (\theta) & \cos (\theta)
    \end{array}\right]\left[\begin{array}{l}
    x \\
    y
    \end{array}\right] . \nonumber \]

    Show that the matrix for \(R_{\theta} \circ R_{\alpha}\) is the same as the matrix for \(R_{\theta+\alpha}\). In other words, show that \(R_{\theta} \circ R_{\alpha}=R_{\theta+\alpha}\).

    Exercise \(\PageIndex{5}\)

    Compute the determinants of the following matrices.

    (a) \(\left[\begin{array}{ll}
    2 & 3 \\
    1 & 4
    \end{array}\right]\)

    (b) \(\left[\begin{array}{rr}
    -3 & -2 \\
    1 & 2
    \end{array}\right]\)

    (c) \(\left[\begin{array}{rrr}
    2 & 3 & 1 \\
    1 & 2 & 9 \\
    5 & -3 & -1
    \end{array}\right]\)

    (d) \(\left[\begin{array}{rrr}
    -1 & 2 & -1 \\
    3 & 1 & 0 \\
    5 & -4 & 0
    \end{array}\right]\)

    (e) \(\left[\begin{array}{rrrr}
    1 & 2 & -1 & 3 \\
    4 & 3 & -2 & 1 \\
    1 & 4 & -4 & 3 \\
    1 & 3 & 3 & 1
    \end{array}\right]\)

    (f) \(\left[\begin{array}{rrrrr}
    1 & 2 & -2 & 3 & 1 \\
    0 & 2 & 0 & 2 & 0 \\
    -3 & 2 & 0 & 1 & 5 \\
    1 & 5 & -2 & 1 & 0 \\
    6 & -5 & 0 & 2 & -4
    \end{array}\right] \)

    Answer

    (a) 5

    (b) -4

    (c) 175

    (d) 17

    (e) -143

    (f) 300

    Exercise \(\PageIndex{6}\)

    Find the area of the parallelogram in \(\mathbb{R}^{2}\) with vertices at (1,−2), (3,−1), (4,1), and (2,0).

    Exercise \(\PageIndex{7}\)

    Find the volume of the parallelepiped in \(\mathbb{R}^{3}\) with bottom vertices at (1,1,1), (2,3,2), (−1,4,3), and (−2,2,2) and top vertices at (1,0,5), (2,2,6), (−1,3,7), and (−2,1,6).

    Answer

    32

    Exercise \(\PageIndex{8}\)

    Let \(P\) be the 4-dimensional parallelepiped with adjacent edges \(\mathbf{a}_{1}=(2,1,2,1)\), \(\mathbf{a}_{2}=(-2,0,1,1)\), \(\mathbf{a}_{3}=(1,1,3,6)\), and \(\mathbf{a}_{4}=(-3,1,5,0)\). Find the volume of \(P\).

    Answer

    8

    Exercise \(\PageIndex{9}\)

    Find \(2 \times 2\) matrices \(A\) and \(B\) for which \(A B \neq B A\).

    Exercise \(\PageIndex{10}\)

    Verify that (1.6.25) and (1.6.26) hold for all \(2 \times 2\) and \(3 \times 3\) matrices.

    Exercise \(\PageIndex{11}\)

    An \(n \times n\) matrix \(M=\left[a_{i j}\right]\) is called a diagonal matrix if \(a_{i j}=0\) for all \(i \neq j\). Show that if \(M\) is a diagonal matrix, then \(\operatorname{det}(M)=a_{11} a_{22} \cdots a_{n n}\).

    Exercise \(\PageIndex{12}\)

    If \(M\) is an \(n \times m\) matrix, then the \(m \times n\) matrix \(M^{T}\) whose columns are the rows of \(M\) is called the transpose of \(M\). For example, if

    \[ M=\left[\begin{array}{ll}
    1 & 2 \\
    3 & 4 \\
    5 & 6
    \end{array}\right] , \nonumber \]

    then

    \[ M^{T}=\left[\begin{array}{lll}
    1 & 3 & 5 \\
    2 & 4 & 6
    \end{array}\right] . \nonumber \]

    (a) Show that for a \(2 \times 2\) matrix \(M\), \(\operatorname{det}\left(M^{T}\right)=\operatorname{det}(M)\).

    (b) Show that for a \(3 \times 3\) matrix \(M\), \(\operatorname{det}\left(M^{T}\right)=\operatorname{det}(M)\). (Hint: Using (1.6.26), expand \(\operatorname{det}(M)\) along the first row and \(\operatorname{det}\left(M^{T}\right)\) along the first column.)

    (c) Use induction to show that for any \(n \times n\) matrix \(M\), \(\operatorname{det}\left(M^{T}\right)=\operatorname{det}(M)\). (Hint: Note that \(\left(M^{T}\right)_{i j}=\left(M_{j i}\right)^{T}\).)

    Exercise \(\PageIndex{13}\)

    Let \(\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)\) and \(\mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right)\) be vectors in \(\mathbb{R}^{3}\) and let \(\mathbf{e}_{1}\), \(\mathbf{e}_{2}\), and \(\mathbf{e}_{3}\) be the standard basis vectors for \(\mathbb{R}^{3}\). Show that applying (1.6.20) to the array

    \[ \left[\begin{array}{lll}
    \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
    x_{1} & x_{2} & x_{3} \\
    y_{1} & y_{2} & y_{3}
    \end{array}\right] \nonumber \]

    yields \(\mathbf{x} \times \mathbf{y}\). Discuss what is correct and what is incorrect about the statement

    \[ \mathbf{x} \times \mathbf{y}=\operatorname{det}\left[\begin{array}{lll}
    \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
    x_{1} & x_{2} & x_{3} \\
    y_{1} & y_{2} & y_{3}
    \end{array}\right] . \nonumber \]

    Exercise \(\PageIndex{14}\)

    Show that the set of all points \(\mathbf{x}=(x, y, z)\) in \(\mathbb{R}^{3}\) which satisfy the equation

    \[ \operatorname{det}\left[\begin{array}{rrr}
    x & y & z \\
    1 & 2 & -1 \\
    3 & 1 & 2
    \end{array}\right]=0 \nonumber \]

    is a plane passing through the points (0,0,0), (1,2,−1), and (3,1,2).

    Answer

    This is the set of all points which satisfy \(x-y-z=0\).

    Exercise \(\PageIndex{15}\)

    Verify directly that if \(L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}\) and \(K: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}\) are linear functions, then \(K \circ L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}\) is also a linear function.


    This page titled 1.6.E: Operations with Matrices (Exercises) is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform.