7.3: Tangents to the Circle
- Page ID
- 34154
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A tangent to a circle is a line which intersects the circle in exactly one point. In Figure 1 line \(\overleftrightarrow{AB}\) is a tangent, intersecting circle \(O\) just at point \(P\).

A tangent has the following important property:
A tangent is perpendicular to the radius drawn to the point of intersection.
- Proof
-
\(OP\) is the shortest line segment that can be drawn from 0 to line \(\overleftrightarrow{AB}\). This is because if \(Q\) were another point on \(\overleftrightarrow{AB}\) then \(OQ\) would be longer than radius \(OR = OP\) (Figure \(\PageIndex{2}\)). Therefore \(OP \perp \overleftrightarrow{AB}\) since the shortest line segment that can be drawn from a point to a straight line is the perpendicular (Theorem \(\PageIndex{2}\), section 4.6). This completes the proof.
Figure \(\PageIndex{2}\): \(OP\) is the shortest line segment that can be drawn from \(O\) to line \(\overleftrightarrow{AB}\).
In Figure \(\PageIndex{1}\) tangent \(\overleftrightarrow{AB}\) is perpendicular to radius \(OP\) at the point of intersection \(P\).
Find \(x\):
Solution
According to Theorem \(\PageIndex{1}\), \(\angle QPO\) is a right angle. We may therefore apply the Pythagorean theorem to right triangle \(QPO\):
\[\begin{array} {rcl} {6^2 + 8^2} & = & {x^2} \\ {36 + 64} & = & {x^2} \\ {100} & = & {x^2} \\ {10} & = & {x} \end{array}\]
Answer: \(x = 10\).
The converse of Theorem \(\PageIndex{1}\) is also true:
A line perpendicular to a radius at a point touching the circle must be a tangent.
In Figure \(\PageIndex{3}\), if \(OP \perp \overleftrightarrow{AB}\) then \(\overleftrightarrow{AB}\) must be a tangent; that is, \(P\) is the only point at which \(\overleftrightarrow{AB}\) can touch the circle (Figure \(\PageIndex{4}\)).


- Proof
-
Suppose \(Q\) were some other point on \(\overleftrightarrow{AB}\). Then \(OQ\) is the hypotenuse of right triangle \(OPQ\) (see Figure \(\PageIndex{3}\)). According to Theorem \(\PageIndex{1}\), section 4.6, the hypotenuse of a right triangle is always larger than a leg. Therefore hypotenuse \(OQ\) is larger than leg \(OP\). Since \(OQ\) is larger than the radius \(OP\), \(Q\) cannot be on the circle. We have shown that no other point on \(AB\) besides \(P\) can be on the circle. Therefore \(\overleftrightarrow{AB}\) is a tangent. This completes the proof.
Find \(x\), \(\angle O\), and \(\angle P\):
Solution
\(\overleftrightarrow{AP}\) and \(\overleftrightarrow{BP}\) are tangent to circle \(O\), so by Theorem \(\PageIndex{1}\), \(\angle OAP = \angle OBP = 90^{\circ}\). The sum of the angles of quadrilateral \(AOBP\) is \(360^{\circ}\) (see Example 1.5.5, section 1.5), hence
\[\begin{array} {rcl} {90 + \left(\dfrac{3}{2} x + 10\right) + 90 + \dfrac{4}{3} x} & = & {360} \\ {\dfrac{3}{2}x + \dfrac{4}{3} x + 190} & = & {360} \\ {\dfrac{3}{2} x + \dfrac{4}{3} x} & = & {170} \\ {(6)\left(\dfrac{3}{2}x\right) + (6)\left(\dfrac{4}{3} x\right)} & = & {(6)(170)} \\ {9x + 8x} & = & {1020} \\ {17x} & = & {1020} \\ {x} & = & {60} \end{array}\]
Substituting 60 for \(x\), we find
\(\angle O = \left(\dfrac{3}{2}x + 10\right)^{\circ} = \left(\dfrac{3}{2}(60) + 10\right)^{\circ} = (90 + 10)^{\circ} = 100^{\circ}\)
and
\(\angle P = \dfrac{4}{3} x^{\circ} = \dfrac{4}{3} (60)^{\circ} = 80^{\circ}\).
Check:
\(\angle A + \angle O + \angle B + \angle P = 90^{\circ} + 100^{\circ} + 90^{\circ} + 80^{\circ} = 360^{\circ}.\)
Answer
\(x = 60, \angle O = 100^{\circ}, \angle P = 80^{\circ}\).
If we measure line segments \(AP\) and \(BP\) in Example \(\PageIndex{2}\) we will find that they are approximately equal in length. In fact we can prove that they must be exactly equal:
Tangents drawn to a circle from an outside point are equal.
In Figure \(\PageIndex{5}\) if \(\overleftrightarrow{AP}\) and \(\overleftrightarrow{BP}\) are tangents then \(AP = BP\).

- Proof
-
Figure \(\PageIndex{6}\): Draw \(OA, OB\) and \(OP\). Draw \(OA, OB\), and \(OP\) (Figure \(\PageIndex{6}\)). \(OA = OB\) (all radii are equal), \(OP = OP\) (identity) and \(\angle A = \angle B = 90^{\circ}\) (Theorem (\PageIndex{1}\)), hence \(\triangle AOP \cong \triangle BOP\) by Hyp-Leg = Hyp-Leg. Therefore \(AP = BP\) beause they are corresponding sides of congruent triangles.
Find \(x\) and \(y\):
Solution
By the Pythagorean theorem, \(x^2 = 3^2 + 6^2 = 9 + 36 = 45\) and \(x = \sqrt{45} = \sqrt{9}\sqrt{5} = 3\sqrt{5}\). By Theorem \(\PageIndex{3}\), \(y = BP = AP = 6\).
Answer: \(x = 3\sqrt{5}, y = 6\).
Find \(x\):
Solution
By Theorem \(\PageIndex{3}\), \(AP = BP\). So \(\triangle ABP\) is isosceles with \(\angle PAB = \angle PBA = 75^{\circ}\). Therefore \(x^{\circ} = 90^{\circ} - 75^{\circ} = 15^{\circ}\).
Answer: \(x = 15\).
If each side of a polygon is tangent to a circle, the circle is said to be inscribed in the polygon and the polygon is said to be circumscribed about the circle. In Figure \(\PageIndex{7}\) circle 0 is inscribed in quadrilateral \(ABCD\) and \(ABCD\) is circumscribed about circle \(O\).

Find the perimeter of \(ABCD\):
Solution
By Theorem \(\PageIndex{3}\), \(CG = CH = 3\) and \(BG = BF = 4\). Also \(DH = DE\) and \(AF = AE\) so \(DH + AF = DE + AE =10\).
Therefore the perimeter of \(ABCD = 3 + 3 + 4 + 4 + 10 + 10 = 34.\)
Answer: \(P = 34\).
Problems
1 - 4. Find \(x\):
1.
2.
3.
4.
5 - 6. Find \(x\), \(\angle O\) and \(\angle P\):
5.
6.
7 - 8. Find \(x\) and \(y\):
7.
8.
9 - 12. Find \(x\):
9.
10.
11.
12.
13 - 16. Find the perimeter of the polygon:
13.
14.
15.
16.