# 4.4: Side-Side-Side condition

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Theorem $$\PageIndex{1}$$ SSS condition

$$\triangle ABC \cong \triangle A'B'C'$$ if

$$A'B' = AB$$, $$B'C' = BC$$ and $$C'A' = CA$$.

Note that this condition is valid for degenerate triangles as well.

Proof

Choose $$C''$$ so that $$A'C'' = A'C'$$ and $$\measuredangle B'A'C'' = \measuredangle BAC$$. According to Axiom IV,

$$\triangle A'B'C'' \cong \triangle ABC.$$

It will suffice to prove that

$\triangle A'B'C' \cong \triangle A'B'C''.$

The condition 4.4.1 trivially holds if $$C'' = C'$$. Thus, it remains to consider the case $$C'' \ne C'$$.

Clearly, the corresponding sides of $$\triangle A'B'C'$$ and $$\triangle A'B'C''$$ are equal. Hence the triangles $$\trianggle C'A'C''$$ and $$\triangle C'B'C''$$ are isosceles. By Theorem 4.3.1, we have

$$\begin{array} {l} {\measuredangle A'C''C' \equiv -\measuredangle A'C'C''} \\ {\measuredangle C'C''B' \equiv -\measuredangle C''C'B'.} \end{array}$$

$$\measuredangle A'C''B' \equiv -\measuredangle A'C'B'.$$

Applying Axiom IV again, we get 4.4.1

## Corollary $$\PageIndex{1}$$

If $$AB + BC = AC$$, then $$B \in [AC]$$.

Proof

We may assume that $$AB > 0$$ and $$BC > 0$$; otherwise $$A = B$$ or $$B = C$$.

Arguing by contradiction, suppose $$AB + BC = AC$$. Choose $$B' \in [AC]$$ such that $$AB = AB'$$; note that $$BC = B'C$$ and $$\measuredangle AB'C = \pi$$.

By $$SSS$$,

$$\triangle ABC \cong \triangle AB'C.$$

Therefore $$\measuredangle ABC = \pi$$. By Theorem 2.4.1, $$B$$ lies between $$A$$ and $$C$$.

## Advanced Exercise $$\PageIndex{1}$$

Let $$M$$ be the midpoint of the side $$[AB]$$ of $$\triangle ABC$$ and $$M'$$ be the midpoint of the side $$[A'B']$$ of $$\triangle A'B'C'$$. Assume $$C'A' = CA$$, $$C'B' = CB$$, and $$C'M' = CM$$. Prove that

$$\triangle A'B'C' \cong \triangle ABC$$.

Hint

Consider the points $$D$$ and $$D'$$, such that $$M$$ is the midpoint of $$[CD]$$ and $$M'$$ is the midpoint of $$[C'D']$$. Show that $$\triangle BCD \cong \triangle B'C'D'$$ and use it to prove that $$\triangle A'B'C' \cong \triangle ABC$$.

## Exercise $$\PageIndex{2}$$

Let $$\triangle ABC$$ be an isosceles triangle with the base $$[AB]$$. Suppose that $$CA' = CB'$$ for some points $$A' \in [BC]$$ and $$B' \in [AC]$$. Show that

(a) $$\triangle AA'C \cong \triangle BB'C$$;

(b) $$\triangle ABB' \cong \triangle BAA'$$.

Hint

(a) Apply SAS.

(b) Use (a) and apply SSS.

## Exercise $$\PageIndex{3}$$

Let $$\triangle ABC$$ be a nondegenerate triangle and let $$f$$ be a motion of the plane such that

$$f(A) = A$$, $$f(B) = B$$ and $$f(C) = C$$.

Show that $$f$$ is the identity map; that is, $$f(X) = X$$ for any point $$X$$ on the plane.

Hint

Without loss of generally, we may assume that $$X$$ is distinct from $$A, B,$$ and $$C$$. Set $$f(X) = X'$$; assume $$X' \ne X$$.

Note that $$AX = AX'$$, $$BX = BX'$$, and $$CX = CX'$$. By SSS we get that $$\angle ABX = \pm \measuredangle ABX'$$. Since $$X \ne X'$$, we get that $$\measuredangle ABX \equiv - \measuredangle ABX'$$. The same way we get that $$\measuredangle CBX \equiv -\measuredangle CBX'$$. Subtracting these two identities from each other, we get that $$\measuredangle ABC \equiv - \measuredangle ABC$$. Conclude that $$\measuredangle ABC = 0$$ or $$\pi$$. That is, $$\triangle ABC$$ is degenerate -- a contradiction.

This page titled 4.4: Side-Side-Side condition is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Anton Petrunin via source content that was edited to the style and standards of the LibreTexts platform.