Skip to main content
Mathematics LibreTexts

6.3: Roots of Complex Numbers

  • Page ID
    14533
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Outcomes

    1. Understand De Moivre’s theorem and be able to use it to find the roots of a complex number.

    A fundamental identity is the formula of De Moivre with which we begin this section.

    Theorem \(\PageIndex{1}\): De Moivre’s Theorem

    For any positive integer \(n\), we have \[\left( e^{i \theta} \right)^n = e^{i n \theta}\nonumber \]

    Thus for any real number \(r>0\) and any positive integer \(n\), we have:

    \[\left( r\left( \cos \theta+i\sin \theta\right) \right) ^{n}=r^{n}\left( \cos n \theta +i\sin n\theta\right)\nonumber\]

    Proof

    The proof is by induction on \(n\). It is clear the formula holds if \(n=1.\) Suppose it is true for \(n.\) Then, consider \(n+1\).

    \[\left( r\left( \cos \theta+i\sin \theta\right) \right) ^{n+1}=\left( r\left( \cos \theta+i\sin \theta\right) \right) ^{n}\left( r\left( \cos \theta+i\sin \theta\right) \right) \nonumber\]

    which by induction equals

    \[\begin{aligned} &=r^{n+1}\left( \cos n\theta+i\sin n\theta\right) \left( \cos \theta+i\sin \theta\right) \\ &= r^{n+1}\left( \left( \cos n\theta\cos \theta-\sin n\theta\sin \theta\right) +i\left( \sin n\theta\cos \theta+\cos n\theta\sin \theta\right) \right)\\ &=r^{n+1}\left( \cos \left( n+1\right) \theta+i\sin \left( n+1\right) \theta\right)\end{aligned}\]

    by the formulas for the cosine and sine of the sum of two angles.

    The process used in the previous proof, called mathematical induction is very powerful in Mathematics and Computer Science and explored in more detail in the Appendix.

    Now, consider a corollary of Theorem \(\PageIndex{1}\).

    Corollary \(\PageIndex{1}\): Roots of Complex Numbers

    Let \(z\) be a non zero complex number. Then there are always exactly \(k\) many \(k^{th}\) roots of \(z\) in \(\mathbb{C}\).

    Proof

    Let \(z=a+bi\) and let \(z=\left\vert z\right\vert \left( \cos \theta+i\sin \theta\right)\) be the polar form of the complex number. By De Moivre’s theorem, a complex number \[w= r e^{i \alpha} = r\left( \cos \alpha +i\sin \alpha \right) \nonumber\] is a \(k^{th}\) root of \(z\) if and only if \[w^k = (r e^{i \alpha})^k = r^k e^{ik\alpha} = r^{k}\left( \cos k\alpha +i\sin k\alpha \right) =\left\vert z\right\vert \left( \cos \theta+i\sin \theta\right) \nonumber\]

    This requires \(r^{k}=\left\vert z\right\vert\) and so \(r=\left\vert z\right\vert ^{1/k}\). Also, both \(\cos \left( k\alpha \right) =\cos \theta\) and \(\sin \left( k\alpha \right) =\sin \theta.\) This can only happen if \[k\alpha =\theta+2 \ell \pi\nonumber \] for \(\ell\) an integer. Thus \[\alpha = \frac{\theta+2 \ell \pi }{k},\; \ell = 0, 1, 2, \cdots, k-1 \nonumber\] and so the \(k^{th}\) roots of \(z\) are of the form \[\left\vert z\right\vert ^{1/k}\left( \cos \left( \frac{\theta+2 \ell \pi }{k}\right) +i\sin \left( \frac{\theta+2 \ell \pi }{k}\right) \right) ,\;\ell = 0, 1, 2, \cdots, k-1 \nonumber\]

    Since the cosine and sine are periodic of period \(2\pi ,\) there are exactly \(k\) distinct numbers which result from this formula.

    The procedure for finding the \(k^{th}\) roots of \(z \in \mathbb{C}\) is as follows.

    Procedure \(\PageIndex{1}\): Finding Roots of a Complex Number

    Let \(w\) be a complex number. We wish to find the \(n^{th}\) roots of \(w\), that is all \(z\) such that \(z^n = w\).

    There are \(n\) distinct \(n^{th}\) roots and they can be found as follows:.

    1. Express both \(z\) and \(w\) in polar form \(z=re^{i\theta}, w=se^{i\phi}\). Then \(z^n = w\) becomes: \[(re^{i\theta})^n = r^n e^{i n \theta} = se^{i\phi} \nonumber\] We need to solve for \(r\) and \(\theta\).
    2. Solve the following two equations: \[ r^n = s \nonumber\] \[ e^{i n \theta} = e^{i \phi} \label{rootseqns}\]
    3. The solutions to \(r^n = s\) are given by \(r = \sqrt[n]{s}\).
    4. The solutions to \(e^{i n \theta} = e^{i \phi}\) are given by: \[n\theta = \phi + 2\pi \ell, \; \mbox{for} \; \ell = 0,1,2, \cdots, n-1 \nonumber\] or \[\theta = \frac{\phi}{n} + \frac{2}{n} \pi \ell, \; \mbox{for} \; \ell = 0,1,2, \cdots, n-1 \nonumber\]
    5. Using the solutions \(r, \theta\) to the equations given in \(\eqref{rootseqns}\) construct the \(n^{th}\) roots of the form \(z = re^{i\theta}\).

    Notice that once the roots are obtained in the final step, they can then be converted to standard form if necessary. Let’s consider an example of this concept. Note that according to Corollary \(\PageIndex{1}\), there are exactly \(3\) cube roots of a complex number.

    Example \(\PageIndex{1}\): Finding Cube Roots

    Find the three cube roots of \(i.\) In other words find all \(z\) such that \(z^3 = i\).

    Solution

    First, convert each number to polar form: \(z = re^{i\theta}\) and \(i = 1 e^{i \pi/2}\). The equation now becomes \[(re^{i\theta})^3 = r^3 e^{3i\theta} = 1 e^{i \pi/2} \nonumber\]

    Therefore, the two equations that we need to solve are \(r^3 = 1\) and \(3i\theta = i \pi/2\). Given that \(r \in \mathbb{R}\) and \(r^3 = 1\) it follows that \(r=1\).

    Solving the second equation is as follows. First divide by \(i\). Then, since the argument of \(i\) is not unique we write \(3\theta = \pi/2 + 2\pi\ell\) for \(\ell = 0,1,2\).

    \[\begin{aligned} 3\theta &= \pi/2 + 2\pi\ell \; \mbox{for} \; \ell = 0,1,2 \\ \theta &= \pi/6 + \frac{2}{3} \pi\ell \; \mbox{for} \; \ell = 0,1,2 \end{aligned}\]

    For \(\ell = 0\): \[\theta = \pi/6 + \frac{2}{3} \pi (0) = \pi/6 \nonumber\]

    For \(\ell = 1\): \[\theta = \pi/6 + \frac{2}{3} \pi(1) = \frac{5}{6} \pi \nonumber\]

    For \(\ell = 2\): \[\theta = \pi/6 + \frac{2}{3} \pi(2) = \frac{3}{2} \pi \nonumber\]

    Therefore, the three roots are given by \[1e^{i \pi/6}, 1e^{i \frac{5}{6}\pi}, 1e^{i \frac{3}{2}\pi} \nonumber\]

    Written in standard form, these roots are, respectively, \[\frac{\sqrt{3}}{2} + i \frac{1}{2}, -\frac{\sqrt{3}}{2} + i \frac{1}{2}, -i \nonumber\]

    The ability to find \(k^{th}\) roots can also be used to factor some polynomials.

    Example \(\PageIndex{2}\): Solving a Polynomial Equation

    Factor the polynomial \(x^{3}-27.\)

    Solution

    First find the cube roots of 27. By the above procedure , these cube roots are \[3,3\left( \displaystyle \frac{-1}{2}+i\displaystyle\frac{\sqrt{3}}{2}\right) , \nonumber\] and \[3\left( \displaystyle\frac{-1}{2}-i\displaystyle\frac{\sqrt{3}}{2}\right). \nonumber\]

    You may wish to verify this using the above steps.

    Therefore, \[x^{3}-27 = \left( x-3\right) \left( x-3\left( \frac{-1}{2}+i\frac{\sqrt{3}}{2}\right) \right) \left( x-3\left( \frac{-1}{2}-i\frac{\sqrt{3}}{2}\right) \right) \nonumber\]

    Note also \[\left( x-3\left( \frac{-1}{2}+i\frac{\sqrt{3}}{2}\right) \right) \left( x-3\left( \frac{-1}{2}-i\frac{\sqrt{3}}{2}\right) \right) = x^{2}+3x+9 \nonumber\] and so \[x^{3}-27=\left( x-3\right) \left( x^{2}+3x+9\right) \nonumber\] where the quadratic polynomial \(x^{2}+3x+9\) cannot be factored without using complex numbers.

    Note that even though the polynomial \(x^{3}-27\) has all real coefficients, it has some complex zeros, \(3\left( \displaystyle \frac{-1}{2}+i\displaystyle\frac{\sqrt{3}}{2}\right) ,\) and \(3\left( \displaystyle\frac{-1}{2}-i\displaystyle\frac{\sqrt{3}}{2}\right)\). These zeros are complex conjugates of each other. It is always the case that if a polynomial has real coefficients and a complex root, it will also have a root equal to the complex conjugate.


    This page titled 6.3: Roots of Complex Numbers is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?