Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

6.3: Roots of Complex Numbers

( \newcommand{\kernel}{\mathrm{null}\,}\)

Outcomes

  1. Understand De Moivre’s theorem and be able to use it to find the roots of a complex number.

A fundamental identity is the formula of De Moivre with which we begin this section.

Theorem 6.3.1: De Moivre’s Theorem

For any positive integer n, we have (eiθ)n=einθ

Thus for any real number r>0 and any positive integer n, we have:

(r(cosθ+isinθ))n=rn(cosnθ+isinnθ)

Proof

The proof is by induction on n. It is clear the formula holds if n=1. Suppose it is true for n. Then, consider n+1.

(r(cosθ+isinθ))n+1=(r(cosθ+isinθ))n(r(cosθ+isinθ))

which by induction equals

=rn+1(cosnθ+isinnθ)(cosθ+isinθ)=rn+1((cosnθcosθsinnθsinθ)+i(sinnθcosθ+cosnθsinθ))=rn+1(cos(n+1)θ+isin(n+1)θ)

by the formulas for the cosine and sine of the sum of two angles.

The process used in the previous proof, called mathematical induction is very powerful in Mathematics and Computer Science and explored in more detail in the Appendix.

Now, consider a corollary of Theorem 6.3.1.

Corollary 6.3.1: Roots of Complex Numbers

Let z be a non zero complex number. Then there are always exactly k many kth roots of z in C.

Proof

Let z=a+bi and let z=|z|(cosθ+isinθ) be the polar form of the complex number. By De Moivre’s theorem, a complex number w=reiα=r(cosα+isinα) is a kth root of z if and only if wk=(reiα)k=rkeikα=rk(coskα+isinkα)=|z|(cosθ+isinθ)

This requires rk=|z| and so r=|z|1/k. Also, both cos(kα)=cosθ and sin(kα)=sinθ. This can only happen if kα=θ+2π for an integer. Thus α=θ+2πk,=0,1,2,,k1 and so the kth roots of z are of the form |z|1/k(cos(θ+2πk)+isin(θ+2πk)),=0,1,2,,k1

Since the cosine and sine are periodic of period 2π, there are exactly k distinct numbers which result from this formula.

The procedure for finding the kth roots of zC is as follows.

Procedure 6.3.1: Finding Roots of a Complex Number

Let w be a complex number. We wish to find the nth roots of w, that is all z such that zn=w.

There are n distinct nth roots and they can be found as follows:.

  1. Express both z and w in polar form z=reiθ,w=seiϕ. Then zn=w becomes: (reiθ)n=rneinθ=seiϕ We need to solve for r and θ.
  2. Solve the following two equations: rn=s einθ=eiϕ
  3. The solutions to rn=s are given by r=ns.
  4. The solutions to einθ=eiϕ are given by: nθ=ϕ+2π,for=0,1,2,,n1 or θ=ϕn+2nπ,for=0,1,2,,n1
  5. Using the solutions r,θ to the equations given in (???) construct the nth roots of the form z=reiθ.

Notice that once the roots are obtained in the final step, they can then be converted to standard form if necessary. Let’s consider an example of this concept. Note that according to Corollary 6.3.1, there are exactly 3 cube roots of a complex number.

Example 6.3.1: Finding Cube Roots

Find the three cube roots of i. In other words find all z such that z3=i.

Solution

First, convert each number to polar form: z=reiθ and i=1eiπ/2. The equation now becomes (reiθ)3=r3e3iθ=1eiπ/2

Therefore, the two equations that we need to solve are r3=1 and 3iθ=iπ/2. Given that rR and r3=1 it follows that r=1.

Solving the second equation is as follows. First divide by i. Then, since the argument of i is not unique we write 3θ=π/2+2π for =0,1,2.

3θ=π/2+2πfor=0,1,2θ=π/6+23πfor=0,1,2

For =0: θ=π/6+23π(0)=π/6

For =1: θ=π/6+23π(1)=56π

For =2: θ=π/6+23π(2)=32π

Therefore, the three roots are given by 1eiπ/6,1ei56π,1ei32π

Written in standard form, these roots are, respectively, 32+i12,32+i12,i

The ability to find kth roots can also be used to factor some polynomials.

Example 6.3.2: Solving a Polynomial Equation

Factor the polynomial x327.

Solution

First find the cube roots of 27. By the above procedure , these cube roots are 3,3(12+i32), and 3(12i32).

You may wish to verify this using the above steps.

Therefore, x327=(x3)(x3(12+i32))(x3(12i32))

Note also (x3(12+i32))(x3(12i32))=x2+3x+9 and so x327=(x3)(x2+3x+9) where the quadratic polynomial x2+3x+9 cannot be factored without using complex numbers.

Note that even though the polynomial x327 has all real coefficients, it has some complex zeros, 3(12+i32), and 3(12i32). These zeros are complex conjugates of each other. It is always the case that if a polynomial has real coefficients and a complex root, it will also have a root equal to the complex conjugate.


This page titled 6.3: Roots of Complex Numbers is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?