Skip to main content
Mathematics LibreTexts

6: Complex Numbers

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    • 6.1: Complex Numbers
      Although very powerful, the real numbers are inadequate to solve equations such as \(x^2+1=0\), and this is where complex numbers come in.
    • 6.2: Polar Form
      In the previous section, we identified a complex number \(z=a+bi\) with a point \(\left( a, b\right)\) in the coordinate plane. There is another form in which we can express the same number, called the polar form.
    • 6.3: Roots of Complex Numbers
      A fundamental identity is the formula of De Moivre with which we begin this section.
    • 6.4: The Quadratic Formula
      When working with real numbers, we cannot solve the quadratic formula if \(b^{2}-4ac<0.\) However, complex numbers allow us to find square roots of negative numbers, and the quadratic formula remains valid for finding roots of the corresponding quadratic equation.
    • 6.E: Exercises

    Thumbnail: Argument \(φ\) and modulus \(r\) locate a point in the complex plane. (CC BY-SA 3.0; Wolfkeeper via Wikipedia)

    This page titled 6: Complex Numbers is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Ken Kuttler (Lyryx) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?