Skip to main content
Mathematics LibreTexts

7.1: A - Complex Numbers

  • Page ID
    70217
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In this Appendix we give a brief review of the arithmetic and basic properties of the complex numbers.

    As motivation, notice that the rotation matrix

    \[ A =\left(\begin{array}{cc}0&-1\\1&0\end{array}\right) \nonumber \]

    has characteristic polynomial \(f(\lambda) = \lambda^2 + 1\). A zero of this function is a square root of \(-1\). If we want this polynomial to have a root, then we have to use a larger number system: we need to declare by fiat that there exists a square root of \(-1\).

    Definition \(\PageIndex{1}\): Imaginary Number and Complex Number
    1. The imaginary number \(i\) is defined to satisfy the equation \(i^2 = -1\).
    2. A complex number is a number of the form \(a+bi\text{,}\) where \(a,b\) are real numbers.

    The set of all complex numbers is denoted \(\mathbb{C}\).

    The real numbers are just the complex numbers of the form \(a + 0i\text{,}\) so that \(\mathbb{R}\) is contained in \(\mathbb{C}\).

    We can identify \(\mathbb{C}\) with \(\mathbb{R}^2 \) by \(a+bi \longleftrightarrow {a\choose b}\). So when we draw a picture of \(\mathbb{C}\text{,}\) we draw the plane:

    clipboard_eb784c6933dd9d21e196261e972ce7f1b.png

    Figure \(\PageIndex{1}\)

    Note \(\PageIndex{1}\): Arithmetic of Complex Numbers

    We can perform all of the usual arithmetic operations on complex numbers: add, subtract, multiply, divide, absolute value. There is also an important new operation called complex conjugation.

    • Addition is performed component-wise:

      \[ (a + bi) + (c + di) = (a + c) + (b + d)i. \nonumber \]

    • Multiplication is performed using distributivity and \(i^2=-1\text{:}\)

      \[ (a+bi)(c+di) = ac + adi + bci + bdi^2 = (ac-bd) + (ad+bc)i. \nonumber \]

    • Complex conjugation replaces \(i\) with \(-i\text{,}\) and is denoted with a bar:    

      \[ \overline{a+bi} = a - bi. \nonumber \] The number \(\overline{a+bi}\) is called the complex conjugate of \(a+bi\). One checks that for any two complex numbers \(z,w\text{,}\) we have

      \[ \overline{z+w} = \overline{ z} + \overline{ w} \quad\text{and}\quad \overline{zw} = \overline{z}\cdot\overline{w}. \nonumber \] Also, \((a+bi)(a-bi) = a^2 + b^2\text{,}\) so \(z\bar z\) is a nonnegative real number for any complex number \(z\).

    • The absolute value of a complex number \(z\) is the real number \(|z| = \sqrt{z\overline{ z}}\text{:}\)

      \[ |a+bi| = \sqrt{a^2 + b^2}. \nonumber \] One checks that \(|zw| = |z|\cdot|w|.\)

    • Division by a nonzero real number proceeds component-wise:

      \[ \frac{a+bi}c = \frac ac + \frac bci. \nonumber \]

    • Division by a nonzero complex number requires multiplying the numerator and denominator by the complex conjugate of the denominator:

      \[ \frac zw = \frac{z\overline{ w}}{w\overline{ w}} = \frac{z\overline{ w}}{|w|^2}. \nonumber \] For example,

      \[ \frac{1+i}{1-i} = \frac{(1+i)^2}{1^2+(-1)^2} = \frac{1+2i+i^2}2 = i. \nonumber \]

    • The real and imaginary parts of a complex number are   

      \[ \Re(a+bi) = a \qquad \Im(a+bi) = b. \nonumber \]

    The point of introducing complex numbers is to find roots of polynomials. It turns out that introducing \(i\) is sufficent to find the roots of any polynomial.

    Theorem \(\PageIndex{1}\): Fundamental Theorem of Algebra

    Every polynomial of degree \(n\) has exactly \(n\) (real and) complex roots, counted with multiplicity.

    Equivalently, if \(f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0\) is a polynomial of degree \(n\text{,}\) then \(f\) factors as

    \[ f(x) = (x-\lambda_1)(x-\lambda_2)\cdots(x-\lambda_n) \nonumber \]

    for (not necessarily distinct) complex numbers \(\lambda_1,\lambda_2,\ldots,\lambda_n\).

    Note \(\PageIndex{2}\): Degree-2 Polynomials

    The quadratic formula gives the roots of a degree-2 polynomial, real or complex:

    \[ f(x) = x^2 + bx + c \implies x = \frac{-b \pm \sqrt{b^2 - 4c}}2. \nonumber \]

    For example, if \(f(x) = x^2 - \sqrt 2x + 1\text{,}\) then

    \[ x = \frac{\sqrt 2\pm\sqrt{-2}}2 = \frac{\sqrt 2}2(1\pm i) = \frac{1\pm i}{\sqrt 2}. \nonumber \]

    Note that if \(b,c\) are real numbers, then the two roots are complex conjugates.

    A complex number \(z\) is real if and only if \(z = \bar z\). This leads to the following observation.

    Note \(\PageIndex{3}\)

    If \(f\) is a polynomial with real coefficients, and if \(\lambda\) is a complex root of \(f\text{,}\) then so is \(\overline{\lambda}\text{:}\)

    \[\begin{aligned}0=\overline{f(\lambda )}&=\overline{\lambda^n+a_{n-1}\lambda^{n-1}+\cdots +a_1\lambda +a_0} \\ &=\overline{\lambda}^n+a_{n-1}\overline{\lambda}^{n-1}+\cdots +a_1\overline{\lambda}+a_0=f(\overline{\lambda}).\end{aligned}\]

    Therefore, complex roots of real polynomials come in conjugate pairs.

    Note \(\PageIndex{4}\): Degree-3 Polynomials

    A real cubic polynomial has either three real roots, or one real root and a conjugate pair of complex roots.

    For example, \(f(x) = x^3-x = x(x-1)(x+1)\) has three real roots; its graph looks like this:

    clipboard_e73520b4c7de4450e3ccbd90925750aeb.png

    Figure \(\PageIndex{2}\)

    On the other hand, the polynomial

    \[ g(x) = x^3-5x^2+x-5 = (x-5)(x^2+1) = (x-5)(x+i)(x-i) \nonumber \]

    has one real root at \(5\) and a conjugate pair of complex roots \(\pm i\). Its graph looks like this:

    clipboard_e9f403173fd4892675fc596400aedfd3e.png

    Figure \(\PageIndex{3}\)


    This page titled 7.1: A - Complex Numbers is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Dan Margalit & Joseph Rabinoff via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?