Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

24.3: Exercises

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise 24.3.1

Which of these sequences is geometric, arithmetic, or neither or both. Write the sequence in the usual form an=a1+d(n1) if it is an arithmetic sequence and an=a1rn1 if it is a geometric sequence.

  1. 7,14,28,56,
  2. 3,30,300,3000,30000,
  3. 81,27,9,3,1,13,
  4. 7,5,3,1,1,3,5,7,
  5. 6,2,23,29,227,
  6. 2,223,2(23)2,2(23)3,
  7. 12,14,18,116,
  8. 2,2,2,2,2,
  9. 5,1,5,1,5,1,5,1,
  10. 2,2,2,2,2,2,
  11. 0,5,10,15,20,
  12. 5,53,532,533,534,
  13. 12,14,18,116,
  14. log(2),log(4),log(8),log(16),
  15. an=4n
  16. an=4n
  17. an=2(9)n
  18. an=(13)n
  19. an=(57)n
  20. an=(57)n
  21. an=2n
  22. an=3n+1
Answer
  1. geometric, 72n1
  2. geometric, 3(10)n1
  3. geometric, 81(13)n1
  4. arithmetic, 7+2(n1)=9+2n
  5. geometric, 6(13)n1
  6. geometric, 2(23)n1
  7. geometric, 12(12)n1
  8. both, 2=2+0(n1)=2(1)n1
  9. neither
  10. geometric, 2(1)n1
  11. arithmetic, 5(n1)
  12. geometric, 5(13)n1
  13. geometric, 12(12)n1
  14. neither
  15. geometric, 4(4)n1
  16. arithmetic, 44(n1)=4n
  17. geometric, 18(9)n1
  18. geometric, 13(13)n1
  19. geometric, 57(57)n1
  20. geometric, 57(57)n1
  21. neither
  22. arithmetic, 4+3(n1)=1+3n

Exercise 24.3.2

A geometric sequence, an=a1rn1, has the given properties. Find the term an of the sequence.

  1. a1=3, and r=5, find a4
  2. a1=200, and r=12, find a6
  3. a1=7, and r=2, find an (for all n)
  4. r=2, and a4=48, find a1
  5. r=100, and a4=900,000, find an (for all n)
  6. a1=20, a4=2500, find an (for all n)
  7. a1=18, and a6=3586, find an (for all n)
  8. a3=36, and a6=972, find an (for all n)
  9. a8=4000, a10=40, and r is negative, find an (for all n)
Answer
  1. 375
  2. 6.25
  3. 72n1
  4. 6
  5. 910(100)n1
  6. 20(5)n1
  7. 18(38)n1
  8. 43n1
  9. 40000000000(110)n1

Exercise 24.3.3

Find the value of the finite geometric series using formula [EQU:geometric-series]. Confirm the formula either by adding the the summands directly, or alternatively by using the calculator.

  1. Find the sum 4j=1aj for the geometric sequence aj=54j1.
  2. Find the sum 7i=1ai for the geometric sequence an=(12)n.
  3. Find: 5m=1(15)m
  4. Find: 6k=12.710k
  5. Find the sum of the first 5 terms of the geometric sequence: 2,6,18,54,
  6. Find the sum of the first 6 terms of the geometric sequence: 5,15,45,135,
  7. Find the sum of the first 8 terms of the geometric sequence: 1,7,49,343,
  8. Find the sum of the first 10 terms of the geometric sequence: 600,300,150,75,37.5,
  9. Find the sum of the first 40 terms of the geometric sequence: 5,5,5,5,5,
Answer
  1. 425
  2. 127128
  3. 5213125
  4. 2999997
  5. 242
  6. 910
  7. 960,800
  8. 25,57564
  9. 200

Exercise 24.3.4

Find the value of the infinite geometric series.

  1. j=1aj, for aj=3(23)j1
  2. j=17(15)j
  3. j=1613j
  4. n=12(0.8)n
  5. n=1(0.99)n
  6. 27+9+3+1+13+
  7. 2+112+14
  8. 622329
  9. 100+40+16+6.4+
  10. 54+186+2
Answer
  1. 9
  2. 76
  3. 3
  4. 8
  5. 99
  6. 812
  7. 43
  8. 9
  9. 5003
  10. 812

Exercise 24.3.5

Rewrite the decimal using an infinite geometric sequence, and then use the formula for infinite geometric series to rewrite the decimal as a fraction (see example 24.2.3).

  1. 0.44444
  2. 0.77777
  3. 5.55555
  4. 0.2323232323
  5. 39.393939
  6. 0.248248248
  7. 20.02002
  8. 0.5040504
Answer
  1. 49
  2. 79
  3. 509
  4. 2399
  5. 130033
  6. 248999
  7. 20000999
  8. 5601111

This page titled 24.3: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?