24.3: Exercises
- Page ID
- 54482
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Which of these sequences is geometric, arithmetic, or neither or both. Write the sequence in the usual form \(a_n=a_1+d(n-1)\) if it is an arithmetic sequence and \(a_n=a_1\cdot r^{n-1}\) if it is a geometric sequence.
- \(7, 14, 28, 56, \dots\)
- \(3, -30, 300, -3000, 30000, \dots\)
- \(81, 27, 9, 3, 1, \dfrac{1}{3}, \dots\)
- \(-7, -5, -3, -1, 1, 3, 5, 7, \dots\)
- \(-6, 2, -\dfrac 2 3, \dfrac 2 9, -\dfrac 2 {27}, \dots\)
- \(-2, -2\cdot \dfrac 2 3, -2 \cdot \left(\dfrac 2 3\right)^2, -2 \cdot \left(\dfrac 2 3\right)^3, \dots\)
- \(\dfrac 1 2, \dfrac 1 4, \dfrac 1 8, \dfrac 1 {16}, \dots\)
- \(2, 2, 2, 2, 2, \dots\)
- \(5, 1, 5, 1, 5, 1, 5, 1, \dots\)
- \(-2, 2, -2, 2, -2, 2, \dots\)
- \(0, 5, 10, 15, 20, \dots\)
- \(5, \dfrac 5 3, \dfrac 5 {3^2}, \dfrac 5 {3^3}, \dfrac 5 {3^4}, \dots\)
- \(\dfrac 1 2, \dfrac 1 4, \dfrac 1 8, \dfrac 1 {16}, \dots\)
- \(\log(2), \log(4), \log(8), \log(16), \dots\)
- \(a_n=-4^n\)
- \(a_n=-4n\)
- \(a_n=2\cdot (-9)^n\)
- \(a_n=\left(\dfrac 1 3 \right)^n\)
- \(a_n=-\left(\dfrac 5 7 \right)^n\)
- \(a_n=\left(-\dfrac 5 7 \right)^n\)
- \(a_n=\dfrac 2 n\)
- \(a_n=3n+1\)
- Answer
-
- geometric, \(7 \cdot 2^{n-1}\)
- geometric, \(3 \cdot(-10)^{n-1}\)
- geometric, \(81\left(\dfrac{1}{3}\right)^{n-1}\)
- arithmetic, \(-7+2(n-1)=-9+2 n\)
- geometric, \(-6\left(-\dfrac{1}{3}\right)^{n-1}\)
- geometric, \(-2\left(\dfrac{2}{3}\right)^{n-1}\)
- geometric, \(\dfrac{1}{2}\left(\dfrac{1}{2}\right)^{n-1}\)
- both, \(2=2+0(n-1)=2(1)^{n-1}\)
- neither
- geometric, \(-2(-1)^{n-1}\)
- arithmetic, \(5(n − 1)\)
- geometric, \(5\left(\dfrac{1}{3}\right)^{n-1}\)
- geometric, \(\dfrac{1}{2}\left(\dfrac{1}{2}\right)^{n-1}\)
- neither
- geometric, \(-4(4)^{n-1}\)
- arithmetic, \(−4 − 4(n − 1) = −4n\)
- geometric, \(-18(-9)^{n-1}\)
- geometric, \(\dfrac{1}{3}\left(\dfrac{1}{3}\right)^{n-1}\)
- geometric, \(-\dfrac{5}{7}\left(\dfrac{5}{7}\right)^{n-1}\)
- geometric, \(-\dfrac{5}{7}\left(-\dfrac{5}{7}\right)^{n-1}\)
- neither
- arithmetic, \(4+3(n-1)=1+3 n\)
A geometric sequence, \(a_n=a_1\cdot r^{n-1}\), has the given properties. Find the term \(a_n\) of the sequence.
- \(a_1=3\), and \(r=5\), find \(a_4\)
- \(a_1=200\), and \(r=-\dfrac 1 2\), find \(a_6\)
- \(a_1=-7\), and \(r=2\), find \(a_n\) (for all \(n\))
- \(r=2\), and \(a_4=48\), find \(a_1\)
- \(r=100\), and \(a_{4}=900,000\), find \(a_n\) (for all \(n\))
- \(a_{1}=20\), \(a_{4}=2500\), find \(a_n\) (for all \(n\))
- \(a_1=\dfrac 1 8\), and \(a_6=\dfrac{3^5}{8^6}\), find \(a_n\) (for all \(n\))
- \(a_3=36\), and \(a_{6}=972\), find \(a_n\) (for all \(n\))
- \(a_{8}=4000\), \(a_{10}=40\), and \(r\) is negative, find \(a_n\) (for all \(n\))
- Answer
-
- \(375\)
- \(6.25\)
- \(-7 \cdot 2^{n-1}\)
- \(6\)
- \(\dfrac{9}{10}(100)^{n-1}\)
- \(20 \cdot(5)^{n-1}\)
- \(\dfrac{1}{8}\left(\dfrac{3}{8}\right)^{n-1}\)
- \(4 \cdot 3^{n-1}\)
- \(-40000000000\left(-\dfrac{1}{10}\right)^{n-1}\)
Find the value of the finite geometric series using formula [EQU:geometric-series]. Confirm the formula either by adding the the summands directly, or alternatively by using the calculator.
- Find the sum \(\sum\limits_{j=1}^4 a_j\) for the geometric sequence \(a_j=5\cdot 4^{j-1}\).
- Find the sum \(\sum\limits_{i=1}^7 a_i\) for the geometric sequence \(a_n=\left(\dfrac 1 2\right)^n\).
- Find: \(\sum\limits_{m=1}^{5} \left(-\dfrac{1}{5}\right)^m\)
- Find: \(\sum\limits_{k=1}^{6} 2.7\cdot 10^k\)
- Find the sum of the first \(5\) terms of the geometric sequence: \[2, 6, 18, 54, \dots \nonumber \]
- Find the sum of the first \(6\) terms of the geometric sequence: \[-5, 15, -45, 135, \dots \nonumber \]
- Find the sum of the first \(8\) terms of the geometric sequence: \[-1, -7, -49, -343, \dots \nonumber \]
- Find the sum of the first \(10\) terms of the geometric sequence: \[600, -300, 150, -75, 37.5, \dots \nonumber \]
- Find the sum of the first \(40\) terms of the geometric sequence: \[5, 5, 5, 5, 5, \dots \nonumber \]
- Answer
-
- \(425\)
- \(\dfrac{127}{128}\)
- \(-\dfrac{521}{3125}\)
- \(2999997\)
- \(242\)
- \(910\)
- \(-960,800\)
- \(\dfrac{25,575}{64}\)
- \(200\)
Find the value of the infinite geometric series.
- \(\sum_{j=1}^\infty a_j\), for \(a_j=3\cdot \left(\dfrac 2 3\right)^{j-1}\)
- \(\sum_{j=1}^\infty 7\cdot \left(-\dfrac 1 5\right)^{j}\)
- \(\sum_{j=1}^\infty 6\cdot \dfrac 1 {3^j}\)
- \(\sum_{n=1}^\infty -2\cdot \left(0.8\right)^n\)
- \(\sum_{n=1}^\infty \left(0.99\right)^n\)
- \(27+9+3+1+\dfrac 1 3+\dots\)
- \(-2+1-\dfrac 1 2+\dfrac 1 4-\dots\)
- \(-6-2-\dfrac 2 3-\dfrac 2 9-\dots\)
- \(100+40+16+6.4+ \dots\)
- \(-54+18-6+2- \dots\)
- Answer
-
- \(9\)
- \(-\dfrac{7}{6}\)
- \(3\)
- \(-8\)
- \(99\)
- \(\dfrac{81}{2}\)
- \(-\dfrac{4}{3}\)
- \(-9\)
- \(\dfrac{500}{3}\)
- \(-\dfrac{81}{2}\)
Rewrite the decimal using an infinite geometric sequence, and then use the formula for infinite geometric series to rewrite the decimal as a fraction (see example 24.2.3).
- \(0.44444\dots\)
- \(0.77777\dots\)
- \(5.55555\dots\)
- \(0.2323232323\dots\)
- \(39.393939\dots\)
- \(0.248248248\dots\)
- \(20.02002\dots\)
- \(0.5040504\dots\)
- Answer
-
- \(\dfrac{4}{9}\)
- \(\dfrac{7}{9}\)
- \(\dfrac{50}{9}\)
- \(\dfrac{23}{99}\)
- \(\dfrac{1300}{33}\)
- \(\dfrac{248}{999}\)
- \(\dfrac{20000}{999}\)
- \(\dfrac{560}{1111}\)