24.3: Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
Which of these sequences is geometric, arithmetic, or neither or both. Write the sequence in the usual form an=a1+d(n−1) if it is an arithmetic sequence and an=a1⋅rn−1 if it is a geometric sequence.
- 7,14,28,56,…
- 3,−30,300,−3000,30000,…
- 81,27,9,3,1,13,…
- −7,−5,−3,−1,1,3,5,7,…
- −6,2,−23,29,−227,…
- −2,−2⋅23,−2⋅(23)2,−2⋅(23)3,…
- 12,14,18,116,…
- 2,2,2,2,2,…
- 5,1,5,1,5,1,5,1,…
- −2,2,−2,2,−2,2,…
- 0,5,10,15,20,…
- 5,53,532,533,534,…
- 12,14,18,116,…
- log(2),log(4),log(8),log(16),…
- an=−4n
- an=−4n
- an=2⋅(−9)n
- an=(13)n
- an=−(57)n
- an=(−57)n
- an=2n
- an=3n+1
- Answer
-
- geometric, 7⋅2n−1
- geometric, 3⋅(−10)n−1
- geometric, 81(13)n−1
- arithmetic, −7+2(n−1)=−9+2n
- geometric, −6(−13)n−1
- geometric, −2(23)n−1
- geometric, 12(12)n−1
- both, 2=2+0(n−1)=2(1)n−1
- neither
- geometric, −2(−1)n−1
- arithmetic, 5(n−1)
- geometric, 5(13)n−1
- geometric, 12(12)n−1
- neither
- geometric, −4(4)n−1
- arithmetic, −4−4(n−1)=−4n
- geometric, −18(−9)n−1
- geometric, 13(13)n−1
- geometric, −57(57)n−1
- geometric, −57(−57)n−1
- neither
- arithmetic, 4+3(n−1)=1+3n
A geometric sequence, an=a1⋅rn−1, has the given properties. Find the term an of the sequence.
- a1=3, and r=5, find a4
- a1=200, and r=−12, find a6
- a1=−7, and r=2, find an (for all n)
- r=2, and a4=48, find a1
- r=100, and a4=900,000, find an (for all n)
- a1=20, a4=2500, find an (for all n)
- a1=18, and a6=3586, find an (for all n)
- a3=36, and a6=972, find an (for all n)
- a8=4000, a10=40, and r is negative, find an (for all n)
- Answer
-
- 375
- 6.25
- −7⋅2n−1
- 6
- 910(100)n−1
- 20⋅(5)n−1
- 18(38)n−1
- 4⋅3n−1
- −40000000000(−110)n−1
Find the value of the finite geometric series using formula [EQU:geometric-series]. Confirm the formula either by adding the the summands directly, or alternatively by using the calculator.
- Find the sum 4∑j=1aj for the geometric sequence aj=5⋅4j−1.
- Find the sum 7∑i=1ai for the geometric sequence an=(12)n.
- Find: 5∑m=1(−15)m
- Find: 6∑k=12.7⋅10k
- Find the sum of the first 5 terms of the geometric sequence: 2,6,18,54,…
- Find the sum of the first 6 terms of the geometric sequence: −5,15,−45,135,…
- Find the sum of the first 8 terms of the geometric sequence: −1,−7,−49,−343,…
- Find the sum of the first 10 terms of the geometric sequence: 600,−300,150,−75,37.5,…
- Find the sum of the first 40 terms of the geometric sequence: 5,5,5,5,5,…
- Answer
-
- 425
- 127128
- −5213125
- 2999997
- 242
- 910
- −960,800
- 25,57564
- 200
Find the value of the infinite geometric series.
- ∑∞j=1aj, for aj=3⋅(23)j−1
- ∑∞j=17⋅(−15)j
- ∑∞j=16⋅13j
- ∑∞n=1−2⋅(0.8)n
- ∑∞n=1(0.99)n
- 27+9+3+1+13+…
- −2+1−12+14−…
- −6−2−23−29−…
- 100+40+16+6.4+…
- −54+18−6+2−…
- Answer
-
- 9
- −76
- 3
- −8
- 99
- 812
- −43
- −9
- 5003
- −812
Rewrite the decimal using an infinite geometric sequence, and then use the formula for infinite geometric series to rewrite the decimal as a fraction (see example 24.2.3).
- 0.44444…
- 0.77777…
- 5.55555…
- 0.2323232323…
- 39.393939…
- 0.248248248…
- 20.02002…
- 0.5040504…
- Answer
-
- 49
- 79
- 509
- 2399
- 130033
- 248999
- 20000999
- 5601111