25.2: Binomial Expansion
( \newcommand{\kernel}{\mathrm{null}\,}\)
Using the binomial theorem, we can also expand more general powers of sums or differences.
Expand the expression.
- (x2+2y3)5
- (2xy2−4y2)3
- (√2+1)6
- (i−3)4
Solution
- We use the binomial theorem with a=x2 and b=2y3:
\begin{aligned} (x^2+2y^3)^5 &= (x^2)^5+\dbinom{5}{1} (x^2)^{4}(2y^3)+\dbinom{5}{2} (x^2)^{3}(2y^3)^2+\dbinom{5}{3} (x^2)^{2}(2y^3)^{3}+\dbinom{5}{4} (x^2)(2y^3)^{4}+(2y^3)^5 \\ &= x^{10}+5x^8\cdot 2y^3+10x^6\cdot 4y^6+10x^4\cdot 2^3y^9+5x^2\cdot 2^4y^{12}+2^5y^{15}\\ &= x^{10}+10x^8y^3+40x^6y^6+80x^4y^9+80x^2y^{12}+32 y^{15}\end{aligned} \nonumber
- For part (b), it is a=2xy^2 and b=-\dfrac{4}{y^2}.
\begin{aligned} \left(2xy^2-\dfrac{4}{y^2}\right)^3 & = (2xy^2)^3+\dbinom{3}{1}(2xy^2)^2\left(-\dfrac{4}{y^2}\right)+\dbinom{3}{2}(2xy^2)\left(-\dfrac{4}{y^2}\right)^2+\left(-\dfrac{4}{y^2}\right)^3 \\ &= 2^3x^3y^6+3\cdot 2^2x^2y^4\left(-\dfrac{4}{y^2}\right)+3(2xy^2)(-1)^2\dfrac{4^2}{y^4}+(-1)^3\dfrac{4^3}{y^6} \\ &=8x^3y^6-48x^2y^2+96x\cdot \dfrac{1}{y^2}-64\cdot \dfrac{1}{y^6}\end{aligned} \nonumber
- Similarly, for part (c), we now have a=\sqrt{2} and b=1:
\begin{aligned} (\sqrt{2}+1)^6 &= (\sqrt{2})^6+\dbinom{6}{1} (\sqrt{2})^{5}\cdot 1+\dbinom{6}{2} (\sqrt{2})^{4}\cdot 1^2 +\dbinom{6}{3} (\sqrt{2})^{3}\cdot 1^{3}+\dbinom{6}{4} (\sqrt{2})^2\cdot 1^{4}+\dbinom{6}{5}(\sqrt{2})\cdot 1^5+1^6 \\ &= \sqrt{64}+6\cdot \sqrt{32}+15\cdot \sqrt{16}+20\cdot \sqrt{8}+15\cdot \sqrt{4} +6\cdot \sqrt{2}+1\\ &= 8+6\cdot \sqrt{16\cdot 2}+15\cdot 4+20\cdot \sqrt{4\cdot 2}+15\cdot 2 +6\cdot \sqrt{2}+1\\ &= 8+24\sqrt{2}+60+40\sqrt{2}+30+6\sqrt{2}+1\\ &= 99+70\sqrt{2}\end{aligned} \nonumber
Note that the last expression cannot be simplified any further (due to the order of operations).
- Finally, we have a=i and b=-3, and we use the fact that i^2=-1, and therefore, i^3=-i and i^4=+1:
\begin{aligned} (i-3)^4 &= i^4+\dbinom{4}{1}\cdot i^3\cdot (-3)+\dbinom{4}{2}\cdot i^2\cdot (-3)^2 +\dbinom{4}{3}\cdot i\cdot (-3)^{3}+(-3)^4 \\ &= 1+4\cdot (-i)\cdot (-3)+6 \cdot (-1)\cdot 9 +4 \cdot i\cdot (-27)+81 \\ &= 1+12i-54-108i+81\\ &= 28-96i\end{aligned} \nonumber
In some instances it is not necessary to write the full binomial expansion, but it is enough to find a particular term, say the kth term of the expansion.
Recall, for example, the binomial expansion of (a+b)^6:
\begin{array}{ccccccc}\\ \dbinom{6}{0} a^6b^0 + & \dbinom{6}{1} a^{5}b^1 + & \dbinom{6}{2} a^{4}b^2 + & \dbinom{6}{3} a^{3}b^{3} + & \dbinom{6}{4} a^{2}b^{4} + & \dbinom{6}{5} a^{1}b^{5} + & \dbinom{6}{6}a^0b^6\\ \text{first} & \text{second} &\text{third} &\text{fourth} &\text{fifth} &\text{sixth} &\text{seventh} \\ \text{term} & \text{term} &\text{term} &\text{term} &\text{term} &\text{term} &\text{term} \end{array}\nonumber
Note that the exponents of the a’s and b’s for each term always add up to 6, and that the exponents of a decrease from 6 to 0, and the exponents of b increase from 0 to 6. Furthermore observe that in the above expansion the fifth term is \dbinom{6}{4} a^{2}b^{4}.
In general, we define the kth term by the following formula:
\text{The $k$th term in the expansion of $(a+b)^n$ is: }\boxed{\dbinom{n}{k-1}a^{n-k+1}b^{k-1} }
Note in particular, that the kth term has a power of b given by b^{k-1} (and not b^k), it has a binomial coefficient \dbinom{n}{k-1}, and the exponents of a and b add up to n.
Determine:
- the 4th term in the binomial expansion of (p+3q)^{5}
- the 8th term in the binomial expansion of (x^3y-2x^2)^{10}
- the 12th term in the binomial expansion of \left(-\dfrac{5a}{b^7}-b\right)^{15}
Solution
- We have a=p and b=3q, and n=5 and k=4. Thus, the binomial coefficient of the 4th term is \dbinom{5}{3}, the b-term is (3q)^3, and the a-term is p^2. The 4th term is therefore given by
\dbinom{5}{3}\cdot p^2\cdot (3q)^3=10\cdot p^2\cdot 3^3q^3=270p^2q^3 \nonumber
- In this case, a=x^3y and b=-2x^2, and furthermore, n=10 and k=8. The binomial coefficient of the 8th term is \dbinom{10}{7}, the b-term is (-2x^2)^7, and the a-term is (x^3y)^3. Therefore, the 8th term is
\dbinom{10}{7} \cdot (x^3y)^3\cdot (-2x^2)^7 = 120\cdot x^{9}y^3\cdot (-128)x^{14} = -15360\cdot x^{23}y^3 \nonumber
- Similarly, we obtain the 12th term of \left(-\dfrac{5a}{b^7}-b\right)^{15} as
\begin{aligned} \dbinom{15}{11}\cdot \left(-\dfrac{5a}{b^7}\right)^{4}\cdot (-b)^{11}&= 1365\cdot \dfrac{5^4a^4}{b^{28}} \cdot (-b^{11})\\&=1365 \cdot \dfrac{625\cdot a^4\cdot (-b^{11})}{b^{28}}\\ &=-853125 \cdot \dfrac{a^4}{b^{17}}\end{aligned} \nonumber
Here is a variation of the above problem.
Determine:
- the x^4y^{12}-term in the binomial expansion of (5x^2+2y^3)^{6}
- the x^{15}-term in the binomial expansion of (x^3-x)^{7}
- the real part of the complex number (3+2i)^4
Solution
- In this case we have a=5x^2 and b=2y^3. The term x^4y^{12} can be rewritten as x^4y^{12}=(x^2)^2\cdot (y^3)^4, so that the full term \dbinom{n}{k-1}a^{n-k+1}b^{k-1} (including the coefficients) is
\dbinom{6}{4}\cdot (5x^2)^2\cdot(2y^3)^4=15\cdot 25x^4\cdot 16y^{12}=6000 \cdot x^4 y^{12} \nonumber
- The various powers of x in (x^3-x)^{7} (in the order in which they appear in the binomial expansion) are:
(x^3)^7=x^{21}, \quad (x^3)^6\cdot x^1=x^{19}, \quad (x^3)^5\cdot x^2=x^{17}, \quad (x^3)^4\cdot x^3=x^{15}, \quad \dots \nonumber
The last term is precisely the x^{15}-term, that is we take the fourth term, k=4. We obtain a total term (including the coefficients) of
\dbinom{7}{3}\cdot (x^3)^4 \cdot (-x)^3=35\cdot x^{12}\cdot (-x)^3= -35\cdot x^{15} \nonumber
- Recall that i^n is real when n is even, and imaginary when n is odd:
\begin{aligned} i^{1} &=i \\ i^{2} &=-1 \\ i^{3} &=-i \\ i^{4} &=1 \\ i^{5} &=i \\ i^{6} &=-1 \\ & \vdots \end{aligned} \nonumber
The real part of (3+2i)^4 is therefore given by the first, third, and fifth term of the binomial expansion:
\begin{aligned} \text{real part}&=\dbinom{4}{0}\cdot 3^4 \cdot (2i)^0+ \dbinom{4}{2}\cdot 3^2 \cdot(2i)^2+\dbinom{4}{4} \cdot 3^0\cdot (2i)^4\\ &= 1\cdot 81\cdot 1+6\cdot 9 \cdot 4 i^2+ 1\cdot 1\cdot 16 i^4\\&=81+216\cdot (-1)+16\cdot 1\\ &= 81-216+16\\& =-119\end{aligned} \nonumber
The real part of (3+2i)^4 is -119.