Loading [MathJax]/extensions/TeX/mathchoice.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

25.2: Binomial Expansion

( \newcommand{\kernel}{\mathrm{null}\,}\)

Using the binomial theorem, we can also expand more general powers of sums or differences.

Example 25.2.1

Expand the expression.

  1. (x2+2y3)5
  2. (2xy24y2)3
  3. (2+1)6
  4. (i3)4

Solution

  1. We use the binomial theorem with a=x2 and b=2y3:

\begin{aligned} (x^2+2y^3)^5 &= (x^2)^5+\dbinom{5}{1} (x^2)^{4}(2y^3)+\dbinom{5}{2} (x^2)^{3}(2y^3)^2+\dbinom{5}{3} (x^2)^{2}(2y^3)^{3}+\dbinom{5}{4} (x^2)(2y^3)^{4}+(2y^3)^5 \\ &= x^{10}+5x^8\cdot 2y^3+10x^6\cdot 4y^6+10x^4\cdot 2^3y^9+5x^2\cdot 2^4y^{12}+2^5y^{15}\\ &= x^{10}+10x^8y^3+40x^6y^6+80x^4y^9+80x^2y^{12}+32 y^{15}\end{aligned} \nonumber

  1. For part (b), it is a=2xy^2 and b=-\dfrac{4}{y^2}.

\begin{aligned} \left(2xy^2-\dfrac{4}{y^2}\right)^3 & = (2xy^2)^3+\dbinom{3}{1}(2xy^2)^2\left(-\dfrac{4}{y^2}\right)+\dbinom{3}{2}(2xy^2)\left(-\dfrac{4}{y^2}\right)^2+\left(-\dfrac{4}{y^2}\right)^3 \\ &= 2^3x^3y^6+3\cdot 2^2x^2y^4\left(-\dfrac{4}{y^2}\right)+3(2xy^2)(-1)^2\dfrac{4^2}{y^4}+(-1)^3\dfrac{4^3}{y^6} \\ &=8x^3y^6-48x^2y^2+96x\cdot \dfrac{1}{y^2}-64\cdot \dfrac{1}{y^6}\end{aligned} \nonumber

  1. Similarly, for part (c), we now have a=\sqrt{2} and b=1:

\begin{aligned} (\sqrt{2}+1)^6 &= (\sqrt{2})^6+\dbinom{6}{1} (\sqrt{2})^{5}\cdot 1+\dbinom{6}{2} (\sqrt{2})^{4}\cdot 1^2 +\dbinom{6}{3} (\sqrt{2})^{3}\cdot 1^{3}+\dbinom{6}{4} (\sqrt{2})^2\cdot 1^{4}+\dbinom{6}{5}(\sqrt{2})\cdot 1^5+1^6 \\ &= \sqrt{64}+6\cdot \sqrt{32}+15\cdot \sqrt{16}+20\cdot \sqrt{8}+15\cdot \sqrt{4} +6\cdot \sqrt{2}+1\\ &= 8+6\cdot \sqrt{16\cdot 2}+15\cdot 4+20\cdot \sqrt{4\cdot 2}+15\cdot 2 +6\cdot \sqrt{2}+1\\ &= 8+24\sqrt{2}+60+40\sqrt{2}+30+6\sqrt{2}+1\\ &= 99+70\sqrt{2}\end{aligned} \nonumber

Note that the last expression cannot be simplified any further (due to the order of operations).

  1. Finally, we have a=i and b=-3, and we use the fact that i^2=-1, and therefore, i^3=-i and i^4=+1:

\begin{aligned} (i-3)^4 &= i^4+\dbinom{4}{1}\cdot i^3\cdot (-3)+\dbinom{4}{2}\cdot i^2\cdot (-3)^2 +\dbinom{4}{3}\cdot i\cdot (-3)^{3}+(-3)^4 \\ &= 1+4\cdot (-i)\cdot (-3)+6 \cdot (-1)\cdot 9 +4 \cdot i\cdot (-27)+81 \\ &= 1+12i-54-108i+81\\ &= 28-96i\end{aligned} \nonumber

In some instances it is not necessary to write the full binomial expansion, but it is enough to find a particular term, say the kth term of the expansion.

Observation: kth term of expansion

Recall, for example, the binomial expansion of (a+b)^6:

\begin{array}{ccccccc}\\ \dbinom{6}{0} a^6b^0 + & \dbinom{6}{1} a^{5}b^1 + & \dbinom{6}{2} a^{4}b^2 + & \dbinom{6}{3} a^{3}b^{3} + & \dbinom{6}{4} a^{2}b^{4} + & \dbinom{6}{5} a^{1}b^{5} + & \dbinom{6}{6}a^0b^6\\ \text{first} & \text{second} &\text{third} &\text{fourth} &\text{fifth} &\text{sixth} &\text{seventh} \\ \text{term} & \text{term} &\text{term} &\text{term} &\text{term} &\text{term} &\text{term} \end{array}\nonumber

Note that the exponents of the a’s and b’s for each term always add up to 6, and that the exponents of a decrease from 6 to 0, and the exponents of b increase from 0 to 6. Furthermore observe that in the above expansion the fifth term is \dbinom{6}{4} a^{2}b^{4}.

In general, we define the kth term by the following formula:

\text{The $k$th term in the expansion of $(a+b)^n$ is: }\boxed{\dbinom{n}{k-1}a^{n-k+1}b^{k-1} }

Note in particular, that the kth term has a power of b given by b^{k-1} (and not b^k), it has a binomial coefficient \dbinom{n}{k-1}, and the exponents of a and b add up to n.

Example \PageIndex{2}

Determine:

  1. the 4th term in the binomial expansion of (p+3q)^{5}
  2. the 8th term in the binomial expansion of (x^3y-2x^2)^{10}
  3. the 12th term in the binomial expansion of \left(-\dfrac{5a}{b^7}-b\right)^{15}

Solution

  1. We have a=p and b=3q, and n=5 and k=4. Thus, the binomial coefficient of the 4th term is \dbinom{5}{3}, the b-term is (3q)^3, and the a-term is p^2. The 4th term is therefore given by

\dbinom{5}{3}\cdot p^2\cdot (3q)^3=10\cdot p^2\cdot 3^3q^3=270p^2q^3 \nonumber

  1. In this case, a=x^3y and b=-2x^2, and furthermore, n=10 and k=8. The binomial coefficient of the 8th term is \dbinom{10}{7}, the b-term is (-2x^2)^7, and the a-term is (x^3y)^3. Therefore, the 8th term is

\dbinom{10}{7} \cdot (x^3y)^3\cdot (-2x^2)^7 = 120\cdot x^{9}y^3\cdot (-128)x^{14} = -15360\cdot x^{23}y^3 \nonumber

  1. Similarly, we obtain the 12th term of \left(-\dfrac{5a}{b^7}-b\right)^{15} as

\begin{aligned} \dbinom{15}{11}\cdot \left(-\dfrac{5a}{b^7}\right)^{4}\cdot (-b)^{11}&= 1365\cdot \dfrac{5^4a^4}{b^{28}} \cdot (-b^{11})\\&=1365 \cdot \dfrac{625\cdot a^4\cdot (-b^{11})}{b^{28}}\\ &=-853125 \cdot \dfrac{a^4}{b^{17}}\end{aligned} \nonumber

Here is a variation of the above problem.

Example \PageIndex{3}

Determine:

  1. the x^4y^{12}-term in the binomial expansion of (5x^2+2y^3)^{6}
  2. the x^{15}-term in the binomial expansion of (x^3-x)^{7}
  3. the real part of the complex number (3+2i)^4

Solution

  1. In this case we have a=5x^2 and b=2y^3. The term x^4y^{12} can be rewritten as x^4y^{12}=(x^2)^2\cdot (y^3)^4, so that the full term \dbinom{n}{k-1}a^{n-k+1}b^{k-1} (including the coefficients) is

\dbinom{6}{4}\cdot (5x^2)^2\cdot(2y^3)^4=15\cdot 25x^4\cdot 16y^{12}=6000 \cdot x^4 y^{12} \nonumber

  1. The various powers of x in (x^3-x)^{7} (in the order in which they appear in the binomial expansion) are:

(x^3)^7=x^{21}, \quad (x^3)^6\cdot x^1=x^{19}, \quad (x^3)^5\cdot x^2=x^{17}, \quad (x^3)^4\cdot x^3=x^{15}, \quad \dots \nonumber

The last term is precisely the x^{15}-term, that is we take the fourth term, k=4. We obtain a total term (including the coefficients) of

\dbinom{7}{3}\cdot (x^3)^4 \cdot (-x)^3=35\cdot x^{12}\cdot (-x)^3= -35\cdot x^{15} \nonumber

  1. Recall that i^n is real when n is even, and imaginary when n is odd:

\begin{aligned} i^{1} &=i \\ i^{2} &=-1 \\ i^{3} &=-i \\ i^{4} &=1 \\ i^{5} &=i \\ i^{6} &=-1 \\ & \vdots \end{aligned} \nonumber

The real part of (3+2i)^4 is therefore given by the first, third, and fifth term of the binomial expansion:

\begin{aligned} \text{real part}&=\dbinom{4}{0}\cdot 3^4 \cdot (2i)^0+ \dbinom{4}{2}\cdot 3^2 \cdot(2i)^2+\dbinom{4}{4} \cdot 3^0\cdot (2i)^4\\ &= 1\cdot 81\cdot 1+6\cdot 9 \cdot 4 i^2+ 1\cdot 1\cdot 16 i^4\\&=81+216\cdot (-1)+16\cdot 1\\ &= 81-216+16\\& =-119\end{aligned} \nonumber

The real part of (3+2i)^4 is -119.


This page titled 25.2: Binomial Expansion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.

  • Was this article helpful?

Support Center

How can we help?