25.3: Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
Find the value of the factorial or binomial coefficient.
- 5!
- 3!
- 9!
- 2!
- 0!
- 1!
- 19!
- 64!
- (52)
- (96)
- (121)
- (120)
- (2322)
- (1912)
- (1311)
- (165)
- Answer
-
- 120
- 6
- 362880
- 2
- 1
- 1
- ≈1.216⋅1017
- ≈1.269⋅1089
- 10
- 84
- 12
- 1
- 23
- 50388
- 78
- 4368
Expand the expression via the binomial theorem.
- (m+n)4
- (x+2)5
- (x−y)6
- (−p−q)5
- Answer
-
- m4+4m3n+6m2n2+4mn3+n4
- x5+10x4+40x3+80x2+80x+32
- x6−6x5y+15x4y2−20x3y3+15x2y4−6xy5+y6
- −p5−5p4q−10p3q2−10p2q3−5pq4−q5
Expand the expression.
- (x−2y)3
- (x−10)4
- (x2y+y2)5
- (2y2−5x4)4
- (x+√x)3
- (−2x2y−y3x)5
- (√2−2√3)3
- (1−i)3
- Answer
-
- x3−6x2y+12xy2−8y3
- x4−40x3+600x2−4000x+10000
- x10y5+5x8y6+10x6y7+10x4y8+5x2y9+y10
- 16y8−160x4y6+600x8y4−1000x12y2+625x16
- x3+3x52+3x2+x32
- −32x10y5−80x7y−80x4y3−40xy7−10y11x2−y15x5
- 38√2−36√3
- −2−2i
Determine:
- the first 3 terms in the binomial expansion of (xy−4x)5
- the first 2 terms in the binomial expansion of (2a2+b3)9
- the last 3 terms in the binomial expansion of (3y2−x2)7
- the first 3 terms in the binomial expansion of (xy−yx)10
- the last 4 terms in the binomial expansion of (m3n+12n2)6
- Answer
-
- x5y5−20x5y4+160x5y3
- 512a18+2304a16b3
- −189x10y4+21x12y2−x14
- x10y10−10x8y8+45x6y6
- 52m9n9+1516m6n10+316m3n11+164n12
Determine:
- the 5th term in the binomial expansion of (x+y)7
- the 3rd term in the binomial expansion of (x2−y)9
- the 10th term in the binomial expansion of (2−w)11
- the 5th term in the binomial expansion of (2x+xy)7
- the 7th term in the binomial expansion of (2a+5b)6
- the 6th term in the binomial expansion of (3p2−q3p)7
- the 10th term in the binomial expansion of (4+b2)13
- Answer
-
- 35x3y4
- 36x14y2
- −220w9
- 280x7y4
- 15625b6
- −189p9q15
- 7152b9
Determine:
- the x3y6-term in the binomial expansion of (x+y)9
- the r4s4-term in the binomial expansion of (r2−s)6
- the x4-term in the binomial expansion of (x−1)11
- the x3y6-term in the binomial expansion of (x3+5y2)4
- the x7-term in the binomial expansion of (2x−x2)5
- the imaginary part of the number (1+i)3
- Answer
-
- 84x3y6
- 15r4s4
- −330x4
- 500x3y6
- 80x7
- 2i