Skip to main content
Mathematics LibreTexts

2.5E: Limits at Infinity EXERCISES

  • Page ID
    32766
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    2.5E: Limits at Infinity EXERCISES

    For the following exercises, examine the graphs. Identify where the vertical asymptotes are located.

    251)

    Answer:
    \(x=1\)

    252)

    CNX_Calc_Figure_04_06_202.jpeg

    253)

    CNX_Calc_Figure_04_06_203.jpeg

    Answer:
    \(x=−1,x=2\)

    254)

    CNX_Calc_Figure_04_06_204.jpeg

    255)

    CNX_Calc_Figure_04_06_205.jpeg

    Answer:
    \(x=0\)

    For the following functions \(f(x)\), determine whether there is an asymptote at \(x=a\). Justify your answer without graphing on a calculator.

    256) \(f(x)=\frac{x+1}{x^2+5x+4},a=−1\)

    257) \(f(x)=\frac{x}{x−2},a=2\)

    Answer:
    Yes, there is a vertical asymptote

    258) \(f(x)=(x+2)^{3/2},a=−2\)

    259) \(f(x)=(x−1)^{−1/3},a=1\)

    Answer:
    Yes, there is vertical asymptote

    260) \(f(x)=1+x^{−2/5},a=1\)


    For the following exercises, evaluate the limit.

    261) \(\displaystyle \lim_{x→∞}\frac{1}{3x+6}\)

    Answer:
    \(0\)

    262) \(\displaystyle \lim_{x→∞}\frac{2x−5}{4x}\)

    263) \(\displaystyle \lim_{x→∞}\frac{x^2−2x+5}{x+2}\)

    Answer:
    \(∞\)

    264) \(\displaystyle \lim_{x→−∞}\frac{3x^3−2x}{x^2+2x+8}\)

    265) \(\displaystyle \lim_{x→−∞}\frac{x^4−4x^3+1}{2−2x^2−7x^4}\)

    Answer:
    \(−\frac{1}{7}\)

    266) \(\displaystyle \lim_{x→∞}\frac{3x}{\sqrt{x^2+1}}\)

    267) \(\displaystyle \lim_{x→−∞}\frac{\sqrt{4x^2−1}}{x+2}\)

    Answer:
    \(−2\)

    268) \(\displaystyle \lim_{x→∞}\frac{4x}{\sqrt{x^2−1}}\)

    269) \(\displaystyle \lim_{x→−∞}\frac{4x}{\sqrt{x^2−1}}\)

    Answer:
    \(−4\)

    270) \(\displaystyle \lim_{x→∞}\frac{2\sqrt{x}}{x−\sqrt{x}+1}\)


    For the following exercises, find the horizontal and vertical asymptotes.

    271) \(f(x)=x−\frac{9}{x}\)

    Answer:
    Horizontal: none, vertical: \(x=0\)

    272) \(f(x)=\frac{1}{1−x^2}\)

    273) \(f(x)=\frac{x^3}{4−x^2}\)

    Answer:
    Horizontal: none, vertical: \(x=±2\)

    274) \(f(x)=\frac{x^2+3}{x^2+1}\)

    275) \(f(x)=sin(x)sin(2x)\)

    Answer:
    Horizontal: none, vertical: none

    276) \(f(x)=cosx+cos(3x)+cos(5x)\)

    277) \(f(x)=\frac{xsin(x)}{x^2−1}\)

    Answer:
    Horizontal: \(y=0,\) vertical: \(x=±1\)

    278) \(f(x)=\frac{x}{sin(x)}\)

    279) \(f(x)=\frac{1}{x^3+x^2}\)

    Answer:
    Horizontal: \(y=0,\) vertical: \(x=0\) and \(x=−1\)

    280) \(f(x)=\frac{1}{x−1}−2x\)

    281) \(f(x)=\frac{x^3+1}{x^3−1}\)

    Answer:
    Horizontal: \(y=1,\) vertical: \(x=1\)

    282) \(f(x)=\frac{sinx+cosx}{sinx−cosx}\)

    283) \(f(x)=x−sinx\)

    Answer:
    Horizontal: none, vertical: none

    284) \(f(x)=\frac{1}{x}−\sqrt{x}\)


    For the following exercises, construct a function \(f(x)\) that has the given asymptotes.

    285) \(x=1\) and \(y=2\)

    Answer:
    Answers will vary, for example: \(y=\frac{2x}{x−1}\)

    286) \(x=1\) and \(y=0\)

    287) \(y=4, x=−1\)

    Answer:
    Answers will vary, for example: \(y=\frac{4x}{x+1}\)

    288) \(x=0\)



    CHAPTER REVIEW EXERCISES

    CR 1) \(\displaystyle \lim_{x→∞}\frac{3x\sqrt{x^2+1}}{\sqrt{x^4−1}}\)

    Answer:
    \(3\)

    CR 2) \(\displaystyle \lim_{x→∞}cos(\frac{1}{x})\)

    CR 3) \(\displaystyle \lim_{x→1}\frac{x−1}{sin(πx)}\)

    Answer:
    \(−\frac{1}{π}\)

    CR 4) \(\displaystyle \lim_{x→∞}(3x)^{1/x}\)


    2.5E: Limits at Infinity EXERCISES is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?