2.5E: Limits at Infinity EXERCISES
( \newcommand{\kernel}{\mathrm{null}\,}\)
selected template will load here
This action is not available.
( \newcommand{\kernel}{\mathrm{null}\,}\)
For the following exercises, examine the graphs. Identify where the vertical asymptotes are located.
251)
252)
253)
254)
255)
For the following functions f(x), determine whether there is an asymptote at x=a. Justify your answer without graphing on a calculator.
256) f(x)=x+1x2+5x+4,a=−1
257) f(x)=xx−2,a=2
258) f(x)=(x+2)3/2,a=−2
259) f(x)=(x−1)−1/3,a=1
260) f(x)=1+x−2/5,a=1
For the following exercises, evaluate the limit.
261) limx→∞13x+6
262) limx→∞2x−54x
263) limx→∞x2−2x+5x+2
264) limx→−∞3x3−2xx2+2x+8
265) limx→−∞x4−4x3+12−2x2−7x4
266) limx→∞3x√x2+1
267) limx→−∞√4x2−1x+2
268) limx→∞4x√x2−1
269) limx→−∞4x√x2−1
270) limx→∞2√xx−√x+1
For the following exercises, find the horizontal and vertical asymptotes.
271) f(x)=x−9x
272) f(x)=11−x2
273) f(x)=x34−x2
274) f(x)=x2+3x2+1
275) f(x)=sin(x)sin(2x)
276) f(x)=cosx+cos(3x)+cos(5x)
277) f(x)=xsin(x)x2−1
278) f(x)=xsin(x)
279) f(x)=1x3+x2
280) f(x)=1x−1−2x
281) f(x)=x3+1x3−1
282) f(x)=sinx+cosxsinx−cosx
283) f(x)=x−sinx
284) f(x)=1x−√x
For the following exercises, construct a function f(x) that has the given asymptotes.
285) x=1 and y=2
286) x=1 and y=0
287) y=4,x=−1
288) x=0
CHAPTER REVIEW EXERCISES
CR 1) limx→∞3x√x2+1√x4−1
CR 2) limx→∞cos(1x)
CR 3) limx→1x−1sin(πx)
CR 4) limx→∞(3x)1/x