3.3e: Exercises - Polynomial End Behaviour
- Page ID
- 45438
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A: Concepts
Exercise \(\PageIndex{A}\)
1) Explain the difference between the coefficient of a power function and its degree.
2) If a polynomial function is in factored form, what would be a good first step in order to determine the degree of the function?
3) In general, explain the end behavior of a power function with odd degree if the leading coefficient is positive.
4) What can we conclude if, in general, the graph of a polynomial function exhibits the following end behavior? As \(x \rightarrow-\infty, f(x) \rightarrow-\infty\) and as \(x \rightarrow \infty, f(x) \rightarrow-\infty\).
- Answers to odd exercises:
-
1. The coefficient of the power function is the real number that is multiplied by the variable raised to a power. The degree is the highest power appearing in the function.
3. As \(x\) decreases without bound, so does \(f(x)\). As \(x\) increases without bound, so does \(f(x)\).
B: Identify Power Functions and Polynomials
Exercise \(\PageIndex{B}\)
\( \bigstar \) Identify the function as a power function, a polynomial function, or neither. If neither, explain.
5) \(f(x)=(x^2)^3\) 6) \(f(x)=x^5\) |
7) \(f(x)=x−x^4\) 8) \(f(x)=\dfrac{x^2}{x^2−1}\) |
9) \(f(x)=3^{x+1}\) 10) \(f(x)=2x(x+2)(x−1)^2\) |
- Answers to odd exercises:
-
5. Power function, \(\quad\) 7. Polynomial, \(\quad\) 9. Neither - this is an exponential function because the variable is in the exponent
C: Degree and Leading Coefficient of a Polynomial
Exercise \(\PageIndex{C}\)
\( \bigstar \) (a) Find the degree and leading coefficient for the given polynomial. (b) State the end behaviour.
11) \(7−2x^2\) 12) \(−3x^4\) |
13) \(x(4−x^2)(2x+1)\) 14) \(−2x^2− 3x^5+ x−6\) |
15) \(x^2(2x−3)^2\) 16) \( -3(2x+5)^2(1-x)^3 \) |
- Answers to odd exercises:
-
11. Degree \(2\), Coefficient = \(-2\) \( \swarrow \dots \searrow \) 13. Degree \(4\), Coefficient = \(-2\) \( \swarrow \dots \searrow \) 15. Degree \(4\), Coefficient = \(4\) or \( \nwarrow \dots \nearrow\)
D: Polynomial End Behaviour
Exercise \(\PageIndex{D}\)
\( \bigstar \) Determine the end behavior of the functions.
17) \(f(x)=x^4\) 18) \(f(x)=x^3\) 19) \(f(x)=−x^4\) 20) \(f(x)=−x^9\)
|
21) \(f(x)=−2x^4− 3x^2+ x−1\) 22) \(f(x)=3x^2+ x−2\) 23) \(f(x)=x^2(2x^3−x+1)\) 24(a) \(f(x)=(2−x)^7\) 24(b) \(f(x)=3x(2x-3)^4\) |
25) \(f(x)=x^4−5x^2\) 26) \(f(x)=−x^3\) 27) \(f(x)=(x−1)(x−2)(3−x)\) 28) \(f(x)=x^2(1−x)^2\) 29) \(f(x)=\dfrac{x^5}{10}−x^4\) |
- Answers to odd exercises:
-
17. As \(x→\pm ∞\), \(f(x)→∞\), \(\quad\)or \( \nwarrow \dots \nearrow\)
19. As \(x→\pm ∞\), \(f(x)→−∞\), \(\quad\)or \( \swarrow \dots \searrow \)
21. As \(x→\pm∞\), \(f(x)→−∞\), \(\quad\)or \( \swarrow \dots \searrow \)
23. As \(x→∞\), \(f(x)→∞\), as \(x→−∞\), \(f(x)→−∞ \)
\(\quad \; \) or \( \swarrow \dots \nearrow \)25. As \(x→\pm ∞\), \(f(x)→∞\), or \( \nwarrow \dots \nearrow\)
27. as \(x→−∞,\) \(f(x)→∞\), as \(x→∞,\) \(f(x)→−∞\)
\(\quad \; \) or \( \nwarrow \dots \searrow \)29. As \(x→∞\), \(f(x)→∞\), as \(x→−∞\), \(f(x)→−∞ \)
\(\quad \; \) or \( \swarrow \dots \nearrow \)
E: Polynomial Intercepts
Exercise \(\PageIndex{E}\)
\( \bigstar \) Find the intercepts of the functions.
30) \(C(t)=2(t−4)(t+1)(t−6)\) 31) \(f(t)=2(t−1)(t+2)(t−3)\) 32) \(g(n)=−2(3n−1)(2n+1)\) 33) \(f(x)=x^4−16\) 34) \(f(x)=x^3+27\) 35) \(f(x)=x(x^2−2x−8)\) 36) \(f(x)=(x+3)(4x^2−1)\) 37) \(C(t)=3(t+2)(t−3)(t+5)\) |
38) \(C(t)=4t(t−2)^2(t+1)\) 39) \(C(t)=2t(t−3)(t+1)^2\) 40) \(C(t)=2t^4−8t^3+6t^2\) 41) \(C(t)=4t^4+12t^3−40t^2\) 42) \(f(x)=x^4−x^2\) 43) \(f(x)=x^3+x^2−20x\) 44) \(f(x)=x^3+6x^2−7x\) 45) \(f(x)=x^3+x^2−4x−4\) |
46) \(f(x)=x^3+2x^2−9x−18\) 47) \(f(x)=2x^3−x^2−8x+4\) 48) \(f(x)=x^6−7x^3−8\) 49) \(f(x)=2x^4+6x^2−8\) 50) \(f(x)=x^3−3x^2−x+3\) 51) \(f(x)=x^6−2x^4−3x^2\) 52) \(f(x)=x^6−3x^4−4x^2\) 53) \(f(x)=x^5−5x^3+4x\) |
\( \bigstar \) Determine the intercepts and the end behavior.
55) \(f(x)=x^3(x−2)\) 56) \(f(x)=x(x−3)(x+3)\) 57) \(f(x)=x(14−2x)(10−2x)\) 58) \(f(x)=x(14−2x)(10−2x)^2\) |
59) \(f(x)=x^3−16x\) 60) \(f(x)=x^3−27\) 61) \(f(x)=x^4−81\) 62) \(f(x)=−x^3+x^2+2x\) |
63) \(f(x)=x^3−2x^2−15x\) 64) \(f(x)=x^3−0.01x\) |
- Answers to odd exercises:
-
31.\((0,12)\); \((1,0),\;(–2,0),\; (3,0)\)
33. \((0,−16)\); \((2,0),\; (−2,0)\).
35. \((0,0), \; (4,0), \; (−2, 0)\).
37. \((0, 90)\); \((−2,0),\;(3,0),\;(−5,0)\)
39. \((0,0)\), \((3,0),(−1,0) \)
41. \((0,0), (−5,0),\; (2,0)\)
43. \((0,0),\; (−5,0),\; (4,0)\)
45. \((0, -4)\); \((2,0),\; (−2,0),\; (−1,0)\)
47. \((0, 4)\); \((−2,0),\;(2,0),\left(\tfrac{1}{2},0\right)\)
49. \((0, -8)\); \((1,0),\;(−1,0)\)
51. \((0,0),\;(\sqrt{3},0)),\;(−\sqrt{3},0)\)
53. \((0,0),\,(1,0),(−1,0),(2,0),(−2,0)\)
55. \((0, 0)\); \((0, 0), (2, 0)\). As \(x→\pm ∞,\) \(f(x)→∞\)
57. \((0,0)\); \((0, 0), (5, 0), (7, 0)\). As \(x→−∞\), \(f(x)→−∞\), as \(x→∞,\) \(f(x)→∞\)
59. \((0, 0)\); \((−4, 0), (0, 0), (4, 0)\). As \(x→−∞\), \(f(x)→−∞\), as \(x→∞,\) \(f(x)→∞\)
61. \((0, -81)\); \((3, 0), (−3, 0)\). As \(x→\pm ∞,\) \(f(x)→∞\)
63.\((0, 0)\); \((−3, 0), (0, 0), (5, 0).\) As \(x→−∞\), \(f(x)→−∞\), as \(x→∞,\) \(f(x)→∞\)
\( \star \)