Assignment 1
- Page ID
- 166179
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Determine whether or not each of the following binary relations \(R\) on the given set \(A\) is reflexive, symmetric, antisymmetric, or transitive. If a relation has a certain property, prove this is so; otherwise, provide a counterexample to show that it does not. If \(R\) is an equivalence relation, describe the equivalence classes of \(A\).
Define a relation \(R\) on \(A={\mathbb Z}\) by
\(a \,R\, b\) if and only if \( 4 \mid (3a+b),\) for \(a,b \in {\mathbb Z}.\)
- Answer
-
\(R \) is reflexive on \(\mathbb{Z} \).
Proof:
Let \(a \in \mathbb{Z} \).
We shall show that \(a R a \), specifically \(4|(3a+a) \).
Consider \(3a+a = 4a \) and \(a \in \mathbb{Z} \).
Thus \(4|(3a+a) \), and \(aRa \).
Therefore \(R \) is reflexive on \(\mathbb{Z} \).◻
\(R \) is symmetric on \(\mathbb{Z} \).
Proof:
Let \(a,b \in \mathbb{Z} \) s.t. \(4|(3a+b) \).
Thus \(3a+b=4m \) for some \(m\in \mathbb{Z} \).
We will show that \(4 \mid 3b+a. \)
Since \(3a+b=4m \), \(-3a-b=-4m \).
Then \(4(a+b) -3a-b=4(a+b)-4m \).
Thus \(3b+a=4(a+b-m) \) where \(a+b-m \in \mathbb{Z} \).
Hence \(4|(3b+a) .\) Hence \(bRa \).
Thus \(R \) is symmetric on \(\mathbb{Z} \).
\(R \) is not antisymmetric on \(\mathbb{Z} \).
Counterexample:
Let \(a=0 \) and \(b=4 \).
Then \(4|(3(0)+4) \) and \(4|(3(4)+0) \). Thus \(4 R 0\) and \(0 R 4\)
However, since \(0 \ne 4 \) \(R \) is not antisymmetric on \(\mathbb{Z} \).◻
\(R \) is transitive on \(\mathbb{Z} \).
Proof:
Let \(a,b,c \in \mathbb{Z} \) s.t. \(aRb \) and \(bRc \).
Since \(aRb \), \(4|(3a+b) \) and \(bRc \), \(5|(3b+c) \).
We will show that \(aRc \), that is \(4|(3a+c) \).
Since \(4|(3a+b) \), \(3a+b=4(k) \) for some \(k \in \mathbb{Z} \).
Since \(4|(3b+c) \), \(3b+c=4(m) \) for some \(m \in \mathbb{Z} \).
Consider \begin{align*} 3a+c&=(3a+b)+(3b+c)-4b \\ & =4(k)+4(m)-(b)\\ &=5(k+m-b) , \end{align*} where \(k+m-b \in \mathbb{Z} .\)
Hence \(4|3a+c \). Thus \(aRc \).
Hence \(R \) is transitive on \(\mathbb{Z} \).◻
Since \(R \) is reflexive, symmetric and transitive on \(\mathbb{Z} \), \(R \) is an equivalence relation.
Te equivalence classes of \(aRb \) iff \(4 | (3a + b) \) are \([0], [1], [2] \) and \([3] \).
Let \(a \in \mathbb{Z} \), then \([a]=\{a\in \mathbb{Z}:x \sim a\} \).
\([0]=\{x \in \mathbb{Z}: x\sim 0\} \)
\(=\{x \in \mathbb{Z}: 4|(3x+(0)) \} \)
\(=\{x \in \mathbb{Z}: 4|3x \} \)
\(=\{x \in \mathbb{Z}: 3x=4m, m\in \mathbb{Z} \} \)
\(=\{\ldots, -8,-4,0,4,8,\ldots\} \).
\([1]=\{x \in \mathbb{Z}: x\sim 1\} \)
\(=\{x \in \mathbb{Z}: 4|(3x+(1)) \} \)
\(=\{x \in \mathbb{Z}: 4|(3x+1) \} \)
\(=\{x \in \mathbb{Z}: 3x+1=4m, m\in \mathbb{Z} \} \)
\(=\{x \in \mathbb{Z}: 3x=4m-1, m\in \mathbb{Z} \} \)
\(=\{\ldots, -7,-3,1,5,9,\ldots\} \).
\([2]=\{x \in \mathbb{Z}: x\sim 2\} \)
\(=\{x \in \mathbb{Z}: 4|(3x+2) \} \)
\(=\{x \in \mathbb{Z}: 3x+2=4m, m\in \mathbb{Z} \} \)
\(=\{x \in \mathbb{Z}: 3x=4m-2, m\in \mathbb{Z} \} \)
\(=\{\ldots, -6,-2,2,6,10,\ldots\} \).
\([3]=\{x \in \mathbb{Z}: x\sim 3\} \)
\(=\{x \in \mathbb{Z}: 4|(3x+3) \} \)
\(=\{x \in \mathbb{Z}: 3x+3=4m, m\in \mathbb{Z} \} \)
\(=\{x \in \mathbb{Z}: 3x=4m-3, m\in \mathbb{Z} \} \)
\(=\{\ldots, -5,-1,3,7,11,\ldots\} \).
Define a relation \(R\) on \(A={\mathbb N}\) by \(a \, R \, b\) if and only if \( 2 \mid a^2+b,\) for \(a,b \in {\mathbb N}.\)
- Answer
-
Proof of Reflexivity:
Let\(a \in \mathbb{N} \).
We shall show that\(a^2+a=2m, m \in \mathbb{Z} \).
We can show this directly or using cases:
Directly:
Since , and are consecutive integers,
is even. Thus \(R \) is reflexive on \(\mathbb{N} \).
Proof of Symmetry:
Let \(a,b \in \mathbb{N} \) such that \(a R b.\)
That means \(a^2 + b = 2m, m \in \mathbb{Z} \).
We will show that \(b^2+a =2k, k \in \mathbb{Z} \).
Since
, .Thus
.
Since a(a+1) is even, is even.
Thus \(R \) is symmetric on \(\mathbb{N} \).
Antisymmetry:Caution: \( 0 \notin \mathbb{N}\).
Let \(a = 1, b = 3\).
\( 1^{2} + 3 = 2(2), \) and \( 3^{2} + 1 = 2(5) \)
But \(1 \neq 3\), hence, \(R\) is \textbf{not} antisymmetric on \(\mathbb{N} \).
Proof of Transitivity:
Let\(a,b,c \in \mathbb{N} \) such that \(2|a^2+b \) and\(2|b^2+c \).
We will show that \(2|a^2+c \).
Consider \(a^2+b=2m, m \in \mathbb{Z} \) and \(b^2+c = 2n, n\in \mathbb{Z} \).
Further, consider that \(a^2+c= 2m-b+2n-b^2 =2(m+n)-(b^2+b) \).
Since \(R \) is reflexive on \(\mathbb{N} \), \(b^2+b=2 q, q \in \mathbb{Z} \)
Thus \(a^2+c=2(m+n-q), m, n,q \in \mathbb{Z} \).
Thus \(R \) is transitive on \(\mathbb{N} \).
Having shown that \(R\) is reflexive, symmetric and transitive on \(\mathbb{Z} \),\(R \) is an equivalence relation on \(\mathbb{Z} \).◻
Let \(a \in \mathbb{Z} \), then \([a]=\{x\in \mathbb{Z}:x\sim a\} \). Caution: \( 0 \notin \mathbb{N}\).
\(a=1 \):
\([1]=\{x \in \mathbb{Z}:x \sim 1\} \)
\(=\{x\in \mathbb{Z}: 2|(x^2+1)\} \)
\(=\{x\in \mathbb{Z}: x^2+1=2m, m \in \mathbb{Z}\} \)
\(=\{\pm1, \pm 3, \cdots \} \).
\(a=2 \):
\([2]=\{x \in \mathbb{Z}:x \sim 2\} \)
\(=\{x\in \mathbb{Z}: 2|(x^2+2)\} \)
\(=\{x\in \mathbb{Z}: x^2+2=2m, m \in \mathbb{Z}\} \)
\(=\{ 0, \pm 2, \pm 4, \cdots \} \).
Let \(A=\mathbb{R} \times \mathbb{R} \). Define \((x,y) \, R \, (x_1,y_1)\) if and only if \( x^2+y^2=x_1^2+y_1^2,\) for \((x,y),(x_1,y_1) \in \mathbb{R}\times \mathbb{R}\).
- Answer
-
Reflexive
Proof:
Let \((a,b) \in \mathbb{R}\times \mathbb{R}\).
Since \(a^2 + b^2 = a^2 + b^2\), \((a,b) \,R\, (a, b)\)
Thus R is reflexive.
Symmetric:
Proof:
Let \((a,b), (a_1, b_1) \in \mathbb{R}\times \mathbb{R}\), s.t \((a,b)R (a_1, b_1)\)
Thus \(a^2 + b^2 = a_1^2 + b_1^2\)
We shall show \(b \,R\, a\).
Since \(a^2 + b^2 = a_1^2 + b_1^2\), \(a_1^2 + b_1^2 = a^2 + b^2\)
Thus \((a_1, b_1) \,R\, (a,b)\), and R is symmetric.
antisymmetric:
Counterexample
let \(a = 1, b = 2, a_1 = 2, b_1 = 1\)
then \( (1)^ + (2)^2 =5= 2^2 + 1^2\)
Thus \((a,b) R (a_1, b_1)\) and \((a_1, b_1) \,R\, (a,b)\)
But \( (1,2) \neq (2,1)\)
Thus R is not anti-symmetric
Transitive:
Proof:
Let \((a,c), (a_1, c_1), (a_2, c_2) \in \mathbb{R} \times \mathbb{R}\) such that \((a,c) R (a_1, c_1)\) and \((a_1, c_1)R (a_2, c_2)\).
Since \((a,c) R (a_1, c_1)\), \(a^2 + b^2 = a_1^2 + b_1^2\).
Since \((a_1, c_1)R (a_2, c_2)\), \(b^2 + c^2 = b_1^2 + c_1^2\)
Thus, \(a^2 + c^2 = a_1^2 + c_1^2\)
Hence \((a,c) R (a_2, c_2)\) and R is transitive.
Since R is reflexive, symmetric and transitive, R is an equivalence relation on A.
The equivalence classes are
\([(0,0)] = \{ (x_1,y_1) \in \mathbb{R}\times \mathbb{R} \mid x_1^2 + y_1^2=0\} \{0\}\)
\([(x, y)] = \{ (x_1,y_1) \in \mathbb{R} \times \mathbb{R} \mid r^2 =x_1^2 + y_1^2= x^2 + y^2 \}\)
Consider the function \(f:\mathbb{Z} \to \mathbb{Z}\) define by \(f(n)=n^2+1.\)
Determine whether f is one-to-one and whether \(f\) is onto. If \(f\) is not onto, find the range of \(f.\)
- Answer
-
No, \(f\) is not injective.
Counterexample:
Let \( x_1=-2\) and \( x_2=2\).
Then \( f(-2)=(-2)^2+4=8\) and\( f(2)=(2)^2+4=8\).
Thus \( f(-2)=f(2)\) but\( -2 \ne 2\) .
Therefore \( h\) is not injective.◻
No,\( h\) is not surjective.
Counterexample:
Let\( A= \mathbb{Z}\) and\( B=\mathbb{Z}\) s.t.\( h:A \rightarrow B\) is defined by\( f(x)=x^2+1\) .
Note that\( 3 \in B\) .
Thus\( 3=x^2+1 \implies x= \pm\sqrt{2} \notin A.\)
Thus, \( f\) is not surjective. Range of \(f = \{ x^2+1 \mid x \in \mathbb{Z} \}=\{ 1, 2, 5, 10, 17, 26 \cdots\}.\)
Suppose \(f: B \to C\) and \(g: A \to B\) are functions.
Prove or disprove the following statements:
- If \(f \circ g\) is onto then \(g\) is onto.
- If \(f \circ g\) is onto and \(f\) is one-to-one, then \(g\) is onto.