Skip to main content
Mathematics LibreTexts

Assignment 2

  • Page ID
    166259
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Exercise \(\PageIndex{1}\)
    1. Compute \(gcd(-231,150)\) and express it as a linear combination of \(-231\) and \(150.\)
    2.  Find \(gcd(-231,150)\) and \(lcm(231, 150)\) using prime factorization.
    3.  Find Euler Totient function \(\phi(150)\) and \(\phi(231)\).
    Answer

    1.\begin{align*} -231 &= -2(150)+69\\ 150 &= 2(69)+12\\69 &= 5(12)+9\\12 &= 1(9) + 3\\9&=3(3)+0. \end{align*} Hence, \(gcd(-231,150) = 3.\) By using Bezout's algorithm, \begin{align*} 3 &= 12(1) + (-9)(1)\\  &= 12(1) + (-69(1) + 12(5))(1)\\&= 12(6) + (-69)(1)\\ &= (150(1) - 69(2))(6) + (-69)(1)\\ &= 150(6) + (-69)(13)\\ &= 150(6) - (-231(1) + 150(2))(13)\\ &= 150(-20) + (-231)(-13).\end{align*}

    2. Since \(gcd(-231,150)=gcd(231,150),\) \(231 = (3)(7)(11),\) and \( 150 = (2)(3)(5^{2} )\),\(gcd(-231,150)= gcd(231,150)=3.\) 

    \(lcm( (3) (7) (11), (2)(3)(5^{2} )) = (2)(3)(5^{2} )(7)(11).\)

    3. \(\phi(150)=(2-1)(3-1)(5^{2}-5 )=40\) and \(\phi(231)=(3-1) (7-1) (11-1)=120\).

    Exercise \(\PageIndex{2}\)
    1. Let \( a, b,c \in \mathbb{Z}_+\). Show that \( gcd(a, bc) = 1\) if and only if \(gcd(a, b) = 1\)  and \(gcd(a, c) =1\).
    2. For every integer \(n\), prove that  \(n^3+2n\)  is divisible by \(3\).
    Answer

    1. Let \( a, b,c \in \mathbb{Z}_+\) Assume that \( gcd(a, bc) = 1\). Then there exist integers\(x \) and \(y\) such that \(a(x)+bc(y)=1.\) Thus \(a(x)+b(cy)=1\) and \(a(x)+c(by)=1.\) Since \(x, cy, by \in \mathbb{Z},\) \(gcd(a, b) = 1\)  and \(gcd(a, c) =1\).

    Conversely, assume that \(gcd(a, b) = 1\)  and \(gcd(a, c) =1\). Then there exist integers\(x,y,v \) and \(w\) such that \(a(x)+b(y)=1\) and \(a(v)+c(w)=1.\) Consider \(1=(ax + by)(av + cw) = a^2xv + axcw+ byav + bycw=a( axv + xcw+ yav)+(bc)yw.\) Since \(( axv + xcw+ yav),yw  \in \mathbb{Z}\), \( gcd(a, bc) = 1\).

    2. Let \(n \in \mathbb{Z}\).

    Proof by Cases:

     Case 1: \(n \equiv 0 (\mod \, 3) \implies n^{3} \equiv 0^{3} (\mod \, 3)\)

    Consider \(n^{3} + 2n = (0^{3} + 0)(mod \, 3) \equiv 0 (\mod \, 3)\).

    Thus \(3 \mid (n^{3} + 2n)\).

    Case 2: \(n \equiv 1 (\mod \, 3) \implies n^{3} \equiv 1^{3} (\mod \, 3)\)

    Consider \(n^{3} + 2n = (1 + 2)(\mod \, 3) \equiv 3 (\mod \, 3)\)

    Thus, \(3 \mid (n^{3} + 2n)\) 

    Case 3: \(n \equiv 2 (\mod \, 3) \implies n^{3} \equiv 2^{3} (\mod \, 3)\)

    Consider \(n^{3} + 2n = (8 + 4)(\mod \, 3) \equiv 12 (\mod \, 3)\)

    Thus \(3 \mid (n^{3} + 2n)\).

    Hence the result.

    Exercise \(\PageIndex{3}\)

    Let \(a, b, c \in \mathbb{Z},\) and \(m \in \mathbb{Z}_+,\) such that \(a\equiv b(\mod\, m).\) Show that 

    1. \(a+c\equiv b+c(\mod \,m).\)
    2. \(ac\equiv bc(\mod\, m).\)
    3. \(a^2\equiv b^2(\mod\, m).\)
    Answer

     Let \(a, b, c \in \mathbb{Z},\) and \(m \in \mathbb{Z}_+,\) such that \(a\equiv b(\mod\, m).\) Since \(a \equiv b (mod \, m), m \mid (a - b)\). That is, \(\exists k \in \mathbb{Z}\) such that \(a = b + km.\)

    1. Now, consider \(a+c=(b+km)+c=(b+c)+km.\) Thus, \((a+c)-(b+c) = km\). Since \( k \in \mathbb{Z}\), \(m \mid ((a+c)-(b+c))\). Hence, \(a + c \equiv b + c (\mod \, m)\).

    2. Now, consider \(ac=c(b+km)=bc+ckm\). Thus, \(ac-bc = (ck)m\). Since \( ck \in \mathbb{Z}\), \(m \mid (ac-bc)\). Hence, \(ac \equiv bc (\mod \, m)\).

    3. Now, consider \(a^{2} = (b+km)^{2} = b^{2} + 2bkm + k^{2}m^{2}.\) Thus  \(a^{2} - b^{2} = m(2bk + k^{2}m)\). Since \( (2bk + k^{2}m)\in \mathbb{Z}\),  \(m \mid (a^{2}-b^{2})\). Therefore \(a^{2} \equiv b^{2} (\mod \, m).\)

    Exercise \(\PageIndex{4}\)

    For each of the following pairs of integers \(a\) and \(n.\) show that \(a\) and \(n\) are relatively prime,  determine multiplicative inverse of  \([a]\) in \(\mathbb{Z}_n,\) and find all integers  \(x\) for \(ax \cong 11 (\mod \, n).\)

    1. \( a=16, n=37.\)
    2. \( a=19, n=35.\)
    3. \(a=69, n=89.\)
    Answer

    1. \begin{align*} 37 &= 2(16)+5 \\16&=3(5)+1. \end{align*} Thus, \(gcd(37,16)=1\).

    \begin{align*} 5 &= 37 - 2(16) \\1 &= 16 - 3(5). \end{align*}

    Now, \begin{align*} 1 &= 16 - 3(5) \\ &= 16 - 3(37 - 2(16))=16(7)+37(-3). \end{align*} Hence, the multiplicative inverse of 16 is 7.

    Now \(x\equiv (7)(11)(\mod 37)\equiv (77)(\mod 37)\equiv 3(\mod 37)\). Thus, the solution set is \(\{ 3+37m |m \in \mathbb{Z}\}.\)

    2.  \begin{align*}35 &= (1)19+16 \\19&=(1)16+3 \\16&=(5)3+1  .\end{align*} Thus, \(gcd(35,19)=1\).

    Now, \begin{align*} 1 &= 16 + 3(-5)\\ &=16+( - 5)(19 - 16)\\&=(6)16+(-5)19\\&=(6)(35+19(-1))+(-5)19\\&=35(6)+19(-11). \end{align*}

    So the multiplicative inverse of \(19\) is \(-11 (\mod 35)\equiv 24(\mod 35).\) Thus \(19x \cong 11 (\mod \, 35) \implies x \cong (24)(11)(\mod 35)\cong 19(\mod 35).\)

    Thus, the solution set is \(\{ 19+35m |m \in \mathbb{Z}\}.\)

    3. \begin{align*} 89 &= 1(69) + 20\\ 69 &= 3(20) + 9\\20& = 2(9) + 2\\9& = 4(2) + 1.\end{align*} Thus, \(gcd(69, 89) = 1.\)

     \begin{align*}1 &= 9(1) - 4(2)\\& = 9(1) - (20(1) - 9(2))(4)\\& = 9(9) - 20(4)\\& = (69(1) - 3(20))(9) - 20(4)\\& = 69(9) - 20(31)\\& = 69(9) - (89(1) - 69(1))(31)\\& = 69(40) - 89(31).\end{align*}So, the multiplicative inverse \(69\) is  \(40 (\mod 89).\)

    Now solve \(69x \cong 11 (\mod \, 89) \implies x \cong (11) (40) (\mod \, 89) \cong 440 \cong 84 (\mod \, 89) \).

    Thus, the solution set is \(\{ 84+89m |m \in \mathbb{Z}\}.\)

     


    This page titled Assignment 2 is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?