Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Assignment 2

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise 1
  1. Compute gcd(231,150) and express it as a linear combination of 231 and 150.
  2.  Find gcd(231,150) and lcm(231,150) using prime factorization.
  3.  Find Euler Totient function ϕ(150) and ϕ(231).
Answer

1.231=2(150)+69150=2(69)+1269=5(12)+912=1(9)+39=3(3)+0. Hence, gcd(231,150)=3. By using Bezout's algorithm, 3=12(1)+(9)(1)=12(1)+(69(1)+12(5))(1)=12(6)+(69)(1)=(150(1)69(2))(6)+(69)(1)=150(6)+(69)(13)=150(6)(231(1)+150(2))(13)=150(20)+(231)(13).

2. Since gcd(231,150)=gcd(231,150), 231=(3)(7)(11), and 150=(2)(3)(52),gcd(231,150)=gcd(231,150)=3. 

lcm((3)(7)(11),(2)(3)(52))=(2)(3)(52)(7)(11).

3. ϕ(150)=(21)(31)(525)=40 and ϕ(231)=(31)(71)(111)=120.

Exercise 2
  1. Let a,b,cZ+. Show that gcd(a,bc)=1 if and only if gcd(a,b)=1  and gcd(a,c)=1.
  2. For every integer n, prove that  n3+2n  is divisible by 3.
Answer

1. Let a,b,cZ+ Assume that gcd(a,bc)=1. Then there exist integersx and y such that a(x)+bc(y)=1. Thus a(x)+b(cy)=1 and a(x)+c(by)=1. Since x,cy,byZ, gcd(a,b)=1  and gcd(a,c)=1.

Conversely, assume that gcd(a,b)=1  and gcd(a,c)=1. Then there exist integersx,y,v and w such that a(x)+b(y)=1 and a(v)+c(w)=1. Consider 1=(ax+by)(av+cw)=a2xv+axcw+byav+bycw=a(axv+xcw+yav)+(bc)yw. Since (axv+xcw+yav),ywZgcd(a,bc)=1.

2. Let nZ.

Proof by Cases:

 Case 1: n0(mod3)n303(mod3)

Consider n3+2n=(03+0)(mod3)0(mod3).

Thus 3(n3+2n).

Case 2: n1(mod3)n313(mod3)

Consider n3+2n=(1+2)(mod3)3(mod3)

Thus, 3(n3+2n) 

Case 3: n2(mod3)n323(mod3)

Consider n3+2n=(8+4)(mod3)12(mod3)

Thus 3(n3+2n).

Hence the result.

Exercise 3

Let a,b,cZ, and mZ+, such that ab(modm). Show that 

  1. a+cb+c(modm).
  2. acbc(modm).
  3. a2b2(modm).
Answer

 Let a,b,cZ, and mZ+, such that ab(modm). Since ab(modm),m(ab). That is, kZ such that a=b+km.

1. Now, consider a+c=(b+km)+c=(b+c)+km. Thus, (a+c)(b+c)=km. Since kZm((a+c)(b+c)). Hence, a+cb+c(modm).

2. Now, consider ac=c(b+km)=bc+ckm. Thus, acbc=(ck)m. Since ckZm(acbc). Hence, acbc(modm).

3. Now, consider a2=(b+km)2=b2+2bkm+k2m2. Thus  a2b2=m(2bk+k2m). Since (2bk+k2m)Zm(a2b2). Therefore a2b2(modm).

Exercise 4

For each of the following pairs of integers a and n. show that a and n are relatively prime,  determine multiplicative inverse of  [a] in Zn, and find all integers  x for ax11(modn).

  1. a=16,n=37.
  2. a=19,n=35.
  3. a=69,n=89.
Answer

1. 37=2(16)+516=3(5)+1. Thus, gcd(37,16)=1.

5=372(16)1=163(5).

Now, 1=163(5)=163(372(16))=16(7)+37(3). Hence, the multiplicative inverse of 16 is 7.

Now x(7)(11)(mod37)(77)(mod37)3(mod37). Thus, the solution set is {3+37m|mZ}.

2.  35=(1)19+1619=(1)16+316=(5)3+1. Thus, gcd(35,19)=1.

Now, 1=16+3(5)=16+(5)(1916)=(6)16+(5)19=(6)(35+19(1))+(5)19=35(6)+19(11).

So the multiplicative inverse of 19 is 11(mod35)24(mod35). Thus 19x11(mod35)x(24)(11)(mod35)19(mod35).

Thus, the solution set is {19+35m|mZ}.

3. 89=1(69)+2069=3(20)+920=2(9)+29=4(2)+1. Thus, gcd(69,89)=1.

 1=9(1)4(2)=9(1)(20(1)9(2))(4)=9(9)20(4)=(69(1)3(20))(9)20(4)=69(9)20(31)=69(9)(89(1)69(1))(31)=69(40)89(31).So, the multiplicative inverse 69 is  40(mod89).

Now solve 69x11(mod89)x(11)(40)(mod89)44084(mod89).

Thus, the solution set is {84+89m|mZ}.

 


This page titled Assignment 2 is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Pamini Thangarajah.

  • Was this article helpful?

Support Center

How can we help?