Assignment 2
( \newcommand{\kernel}{\mathrm{null}\,}\)
- Compute gcd(−231,150) and express it as a linear combination of −231 and 150.
- Find gcd(−231,150) and lcm(231,150) using prime factorization.
- Find Euler Totient function ϕ(150) and ϕ(231).
- Answer
-
1.−231=−2(150)+69150=2(69)+1269=5(12)+912=1(9)+39=3(3)+0. Hence, gcd(−231,150)=3. By using Bezout's algorithm, 3=12(1)+(−9)(1)=12(1)+(−69(1)+12(5))(1)=12(6)+(−69)(1)=(150(1)−69(2))(6)+(−69)(1)=150(6)+(−69)(13)=150(6)−(−231(1)+150(2))(13)=150(−20)+(−231)(−13).
2. Since gcd(−231,150)=gcd(231,150), 231=(3)(7)(11), and 150=(2)(3)(52),gcd(−231,150)=gcd(231,150)=3.
lcm((3)(7)(11),(2)(3)(52))=(2)(3)(52)(7)(11).
3. ϕ(150)=(2−1)(3−1)(52−5)=40 and ϕ(231)=(3−1)(7−1)(11−1)=120.
- Let a,b,c∈Z+. Show that gcd(a,bc)=1 if and only if gcd(a,b)=1 and gcd(a,c)=1.
- For every integer n, prove that n3+2n is divisible by 3.
- Answer
-
1. Let a,b,c∈Z+ Assume that gcd(a,bc)=1. Then there exist integersx and y such that a(x)+bc(y)=1. Thus a(x)+b(cy)=1 and a(x)+c(by)=1. Since x,cy,by∈Z, gcd(a,b)=1 and gcd(a,c)=1.
Conversely, assume that gcd(a,b)=1 and gcd(a,c)=1. Then there exist integersx,y,v and w such that a(x)+b(y)=1 and a(v)+c(w)=1. Consider 1=(ax+by)(av+cw)=a2xv+axcw+byav+bycw=a(axv+xcw+yav)+(bc)yw. Since (axv+xcw+yav),yw∈Z, gcd(a,bc)=1.
2. Let n∈Z.
Proof by Cases:
Case 1: n≡0(mod3)⟹n3≡03(mod3)
Consider n3+2n=(03+0)(mod3)≡0(mod3).
Thus 3∣(n3+2n).
Case 2: n≡1(mod3)⟹n3≡13(mod3)
Consider n3+2n=(1+2)(mod3)≡3(mod3)
Thus, 3∣(n3+2n)
Case 3: n≡2(mod3)⟹n3≡23(mod3)
Consider n3+2n=(8+4)(mod3)≡12(mod3)
Thus 3∣(n3+2n).
Hence the result.
Let a,b,c∈Z, and m∈Z+, such that a≡b(modm). Show that
- a+c≡b+c(modm).
- ac≡bc(modm).
- a2≡b2(modm).
- Answer
-
Let a,b,c∈Z, and m∈Z+, such that a≡b(modm). Since a≡b(modm),m∣(a−b). That is, ∃k∈Z such that a=b+km.
1. Now, consider a+c=(b+km)+c=(b+c)+km. Thus, (a+c)−(b+c)=km. Since k∈Z, m∣((a+c)−(b+c)). Hence, a+c≡b+c(modm).
2. Now, consider ac=c(b+km)=bc+ckm. Thus, ac−bc=(ck)m. Since ck∈Z, m∣(ac−bc). Hence, ac≡bc(modm).
3. Now, consider a2=(b+km)2=b2+2bkm+k2m2. Thus a2−b2=m(2bk+k2m). Since (2bk+k2m)∈Z, m∣(a2−b2). Therefore a2≡b2(modm).
For each of the following pairs of integers a and n. show that a and n are relatively prime, determine multiplicative inverse of [a] in Zn, and find all integers x for ax≅11(modn).
- a=16,n=37.
- a=19,n=35.
- a=69,n=89.
- Answer
-
1. 37=2(16)+516=3(5)+1. Thus, gcd(37,16)=1.
5=37−2(16)1=16−3(5).
Now, 1=16−3(5)=16−3(37−2(16))=16(7)+37(−3). Hence, the multiplicative inverse of 16 is 7.
Now x≡(7)(11)(mod37)≡(77)(mod37)≡3(mod37). Thus, the solution set is {3+37m|m∈Z}.
2. 35=(1)19+1619=(1)16+316=(5)3+1. Thus, gcd(35,19)=1.
Now, 1=16+3(−5)=16+(−5)(19−16)=(6)16+(−5)19=(6)(35+19(−1))+(−5)19=35(6)+19(−11).
So the multiplicative inverse of 19 is −11(mod35)≡24(mod35). Thus 19x≅11(mod35)⟹x≅(24)(11)(mod35)≅19(mod35).
Thus, the solution set is {19+35m|m∈Z}.
3. 89=1(69)+2069=3(20)+920=2(9)+29=4(2)+1. Thus, gcd(69,89)=1.
1=9(1)−4(2)=9(1)−(20(1)−9(2))(4)=9(9)−20(4)=(69(1)−3(20))(9)−20(4)=69(9)−20(31)=69(9)−(89(1)−69(1))(31)=69(40)−89(31).So, the multiplicative inverse 69 is 40(mod89).
Now solve 69x≅11(mod89)⟹x≅(11)(40)(mod89)≅440≅84(mod89).
Thus, the solution set is {84+89m|m∈Z}.