Skip to main content
Mathematics LibreTexts

3.1: Parallelograms

  • Page ID
    34132
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A polygon is a figure formed by line segments which bound a portion of the plane (Figure \(\PageIndex{1}\)), The bounding line segments are called the sides of the polygon, The angles formed by the sides are the angles of the polygon and the vertices of these angles are the vertices of the polygon, The simplest polygon is the triangle, which has 3 sides, In this chapter we will study the quadrilateral, the polygon with 4 sides (Figure \(\PageIndex{2}\)). Other polygons are the pentagon (5 sides), the hexagon (6 sides), the octagon (8 sides), and the decagon (10 sides).

    clipboard_e1879ffba8f6cb9220b97f00be77815cc.png
    Figure \(\PageIndex{1}\): A polygon
    clipboard_edebd558f73eb7c9d493d2a0070b23601.png
    Figure \(\PageIndex{2}\): A quadrilateral
    clipboard_e430097fdd6453a7c8307faa5440ef96e.png
    Figure \(\PageIndex{3}\): A parallelogram.

    A parallelogram is a quadrilateral in which the opposite sides are parallel (Figure \(\PageIndex{3}\)). To discover its properties, we will draw a diagonal, a line connecting the opposite vertices of the parallelogram. In Figure 4, AC is a diagonal of parallelogram \(ABCD\). We will now prove \(\Delta ABC \cong \Delta CDA\).

    clipboard_e42912c3689cfd7a225b899562fd5cf82.png
    Figure \(\PageIndex{4}\): Diagonal \(AC\) divides parallelogram \(ABCD\) into two congruent triangles.
    Statements Reasons
    1. \(\angle 1 = \angle 2\). 1. The alternate interior angles of parallel lines \(AB\) and \(CD\) are equal.
    2. \(\angle 3 = \angle 4\). 2. The alternate interior angles of parallel lines \(BC\) and \(AD\) are equal.
    3. \(AC = AC\). 3. Identity.
    4. \(\triangle ABC \cong \triangle CDA\). 4. \(ASA = ASA\).
    5. \(AB = CD\), \(BC = DA\). 5. The corresponding sides of congruent triangles are equal.
    6. \(\angle B = \angle D\). 6. The corresponding angles of congruent triangles are equal.
    7. \(\angle A = \angle C\). 7. \(\angle A = \angle 1 +\angle 3 = \angle 2 + \angle 4 = \angle C\) (Add statements 1 and 2).

    We have proved the following theorem:

    Theorem \(\PageIndex{1}\)

    The opposite sides and opposite angles of a parallelogram are equal.

    In parallelogram \(ABCD\) of Figure \(\PageIndex{5}\), \(AB = CD\), \(AD = BC\), \(\angle A = \angle C\), and \(\angle B = \angle D\).

    clipboard_e820eb15d6cddb0da9e5c52282638da3b.png
    Figure \(\PageIndex{5}\): The opposite sides and opposite angles of a parallelogram are equal.
    Example \(\PageIndex{1}\)

    Find \(x\), \(y\), \(r\) and \(s\):

    clipboard_ebff146676a9cb2cf865e63954df141f7.png

    Solution

    By Theorem \(\PageIndex{1}\), the opposite sides and opposite angles are equal. Hence \(x^{\circ} = 120^{\circ}\), \(y^{\circ} = 60^{\circ}, r = 15\), and \(s = 10\).

    Answer: \(x = 120, y = 60, r = 15, s = 10\).

    Example \(\PageIndex{2}\)

    Find \(x, y, x\) and \(z:\)

    屏幕快照 2020-11-10 下午8.07.08.png

    Solution

    \(w^{\circ} = 115^{\circ}\) since the opposite angles of a parallelogram are equal. \(x^{\circ} = 180^{\circ} -(w^{\circ} + 30^{\circ}) = 180^{\circ} - (115^{\circ} + 30^{\circ}) = 180^{\circ} - 145^{\circ} = 35^{\circ}\), because the sum of the angles of \(\triangle ABC\) is \(180^{\circ}\), \(y^{\circ} = 30^{\circ}\) and \(x^{\circ} = x^{\circ} = 35^{\circ}\) because they are alternate interior angles of parallel lines.

    Answer: \(w = 115\), \(x = z = 35\), \(y = 30\).

    Example \(\PageIndex{3}\)

    Find \(x\), \(y\), and \(z\):

    屏幕快照 2020-11-10 下午8.12.15.png

    Solution

    \(x = 120\) and \(y = z\) because the opposite angles are equal, \(\angle A\) and \(\angle D\) are supplementary J because they are interior angles on the same side of the transversal of parallel lines (they form the letter "C." Theorem \(\PageIndex{3}\), section 1.4).

    Answer: \(x = 120, y = z = 60\).

    In Example \(\PageIndex{3}\), \(\angle A\) and \(\angle B\), \(\angle B\) and \(\angle C\), \(\angle C\) and \(\angle D\), and \(\angle D\) and \(\angle A\) are called the successive angles of parallelogram \(ABCD\). Example \(\PageIndex{3}\) suggests the following theorem:

    Theorem \(\PageIndex{2}\)

    The successive angles of a parallelogram are supplementary.

    In Figure 6,\(\angle A + \angle B = \angle B + \angle C = \angle C + \angle D = \angle D + \angle A = 180^{\circ}\).

    屏幕快照 2020-11-10 下午8.19.16.png
    Figure \(\PageIndex{6}\), The successive angles of parallelogram \(ABCD\) are supplementary.
    Example \(\PageIndex{4}\)

    Find \(x\), \(\angle A\), \(\angle B\), \(\angle C\), and \(\angle D\).

    屏幕快照 2020-11-10 下午8.22.16.png

    Solution

    \(\angle A\) and \(\angle D\) are supplementary by Theorem \(\PageIndex{2}\).

    \[\begin{array} {rcl} {\angle A + \angle D} & = & {180^{\circ}} \\ {x + 2x + 30} & = & {180} \\ {3x + 30} & = & {180} \\ {3x} & = & {180 - 30} \\ {3x} & = & {150} \\ {x} & = & {50} \end{array}\]

    \(\angle A = x^{\circ} = 50^{\circ}\)

    \(\angle C = \angle A = 50^{\circ}\)

    \(\angle D = 2x + 30^{\circ} = 2(50) + 30^{\circ} = 100 + 30^{\circ} = 130^{\circ}\).

    \(\angle B = \angle D = 130^{\circ}\).

    Check:

    屏幕快照 2020-11-10 下午8.28.57.png

    Answer: \(x = 50\), \(A = 50^{\circ}\), \(B = 130^{\circ}\), \(C = 50^{\circ}\), \(D = 130^{\circ}\).

    Suppose now that both diagonals of parallelogram are drawn (Figure \(\PageIndex{7}\)):

    屏幕快照 2020-11-10 下午8.32.56.png
    Figure \(\PageIndex{7}\). Parallelogram \(ABCD\) with diagonals \(AC\) and \(BD\).

    We have \(\angle 1 = \angle 2\) and \(\angle 3 = \angle 4\) (both pairs of angles are alternate interior angles of parallel lines \(AB\) and \(CD\). Also \(AB = CD\) from Theorem \(\PageIndex{1}\). Therefore \(\triangle ABE \cong \triangle CDE\) by \(ASA = ASA\). Since corresponding sides of congruent triangles are equal, \(AE = CE\) and \(DE = BE\). We have proven:

    Theorem \(\PageIndex{3}\)

    The diagonals of a parallelogram bisect each other (cut each other in half).

    屏幕快照 2020-11-10 下午8.40.46.png
    Figure \(\PageIndex{8}\). The diagonals of parallelogram \(ABCD\) bisect each other.
    Example \(\PageIndex{5}\)

    Find \(x, y, AC\), and \(BD\):

    屏幕快照 2020-11-10 下午8.42.48.png

    Solution

    By Theorem \(\PageIndex{3}\) the diagonals bisect each other.

    \[\begin{array} {rcl} {x} & = & {7} \\ {y} & = & {9} \\ {AC} & = & {9 + 9 = 18} \\ {BD} & = & {7 + 7 = 14} \end{array}\]

    Answer: \(x = 7, y = 9, AC = 18, BD = 14\).

    Example \(\PageIndex{6}\)

    Find \(x, y, AC\), and \(BD\):

    屏幕快照 2020-11-10 下午8.45.49.png

    Solution

    By Theorem \(\PageIndex{3}\) the diagonals bisect each other.

    \(\begin{array} {rcl} {AE} & = & {CE} \\ {x} & = & {2y + 1} \\ {x - 2y} & = & {1} \end{array}\) \(\begin{array} {rcl} {BE} & = & {DE} \\ {2x - y} & = & {x + 2y} \\ {2x - y - x - 2y} & = & {0} \\ {x - 3y} & = & {0} \end{array}\)

    屏幕快照 2020-11-10 下午8.49.22.png

    Check:

    屏幕快照 2020-11-10 下午8.50.14.png

    Answer: \(x = 3, y = 1, AC = 6, BD = 10\).

    Example \(\PageIndex{7}\)

    Find \(x, y, \angle A, \angle B, \angle C\), and \(\angle D\):

    屏幕快照 2020-11-10 下午8.52.21.png

    Solution

    By Theorem \(\PageIndex{2}\):

    \(\begin{array} {rcl} {\angle A + \angle B} & = & {180^{\circ}} \\ {4y + 6 + 12y - 2} & = & {180} \\ {16y + 4} & = & {180} \\ {16y} & = & {180 - 4} \\ {16y} & = & {176} \\ {y} & = & {11} \end{array}\) and \(\begin{array} {rcl} {\angle C + \angle D} & = & {180^{\circ}} \\ {6x - 4 + 15x - 5} & = & {180} \\ {21x - 9} & = & {180} \\ {21x} & = & {180 + 9} \\ {21x} & = & {189} \\ {x} & = & {9} \end{array}\)

    Check:

    屏幕快照 2020-11-10 下午9.01.10.png

    Answer: \(x = 9, y = 11, \angle A = \angle C = 50^{\circ}, \angle B = \angle D = 130^{\circ}\).

    Problems

    For each of the following state any theorem used in obtaining your answer(s):

    1. Find \(x, y, r\), and \(s\):

    Screen Shot 2020-11-10 at 9.12.28 PM.png

    2. Find \(x, y, r\), and \(s\):

    Screen Shot 2020-11-10 at 10.57.48 PM.png

    3. Find \(w, x, y\), and \(z\):

    Screen Shot 2020-11-10 at 10.58.04 PM.png

    4. Find \(w, x, y\), and \(z\):

    Screen Shot 2020-11-10 at 10.58.26 PM.png

    5. Find \(x, y\), and \(z\):

    Screen Shot 2020-11-10 at 10.58.49 PM.png

    6. Find \(x, y\), and \(z\):

    Screen Shot 2020-11-10 at 10.59.10 PM.png

    7. Find \(x, \angle A, \angle B, \angle C\), and \(\angle D\):

    Screen Shot 2020-11-10 at 10.59.45 PM.png

    8. Find \(x, \angle A, \angle B, \angle C\), and \(\angle D\):

    Screen Shot 2020-11-10 at 11.00.10 PM.png

    9. Find \(x, y, AC\), and \(BD\):

    Screen Shot 2020-11-10 at 11.00.29 PM.png

    10. Find \(x, y, AC\), and \(BD\):

    Screen Shot 2020-11-10 at 11.00.48 PM.png

    11. Find \(x, AB\), and \(CD\):

    Screen Shot 2020-11-10 at 11.01.11 PM.png

    12. Find \(x, AD\), and \(BC\):

    Screen Shot 2020-11-10 at 11.01.24 PM.png

    13. Find \(x, y, AB, BC, CD\), and \(AD\):

    Screen Shot 2020-11-10 at 11.01.39 PM.png

    14. Find \(x, y, AB, BC, CD\), and \(AD\):

    Screen Shot 2020-11-10 at 11.01.56 PM.png

    15. Find \(x, y, AC\), and \(BD\):

    Screen Shot 2020-11-10 at 11.03.41 PM.png

    16. Find \(x, y, AC\), and \(BD\):

    Screen Shot 2020-11-10 at 11.03.59 PM.png

    17. Find \(x, y, \angle A, \angle B, \angle C\), and \(\angle D\):

    Screen Shot 2020-11-10 at 11.04.17 PM.png

    18. Find \(x, y, \angle A, \angle B, \angle C\), and \(\angle D\):

    Screen Shot 2020-11-10 at 11.04.37 PM.png


    This page titled 3.1: Parallelograms is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Henry Africk (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.