Skip to main content
Mathematics LibreTexts

5.2: Perpendicular Bisector

  • Page ID
    23606
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Assume \(M\) is the midpoint of the segment \([AB]\); that is, \(M \in (AB)\) and \(AM = MB\).

    The line \(\ell\) that passes thru \(M\) and perpendicular to \((AB)\), is called the perpendicular bisector to the segment \([AB]\).

    Theorem \(\PageIndex{1}\)

    Given distinct points \(A\) and \(B\), all points equidistant from \(A\) and \(B\) and no others lie on the perpendicular bisector to \([AB]\).

    Proof

    截屏2021-02-03 下午4.38.06.png

    Let \(M\) be the midpoint of \([AB]\).

    Assume \(PA = PB\) and \(P \ne M\). According to SSS (Theorem 4.4.1), \(\triangle AMP \cong \triangle BMP\). Hence

    \(\measuredangle AMP = \pm \measuredangle BMP.\)

    Since \(A \ne B\), we have "-" in the above formula. Further,

    \[\begin{array} {rcl} {\pi} & = & {\measuredangle AMB \equiv} \\ {} & \equiv & {\measuredangle AMP + \measuredangle PMB \equiv} \\ {} & \equiv & {2 \cdot \measuredangle AMP.} \end{array}\]

    That is, \(\measuredangle AMP = \pm \dfrac{\pi}{2}\). Therefore, \(P\) lies on the perpendicular bisector.

    To prove the converse, suppose \(P\) is any point on the perpendicular bisector to \([AB]\) and \(P \ne M\). Then \(\measuredangle AMP = \pm \dfrac{\pi}{2}\), \(\measuredangle BMP = \pm \dfrac{\pi}{2}\) and \(AM = BM\). By SAS, \(\triangle AMP \cong \triangle BMP\); in particular, \(AP = BP\).

    Exercise \(\PageIndex{1}\)

    Let \(\ell\) be the perpendicular bisector to the segment \([AB]\) and \(X\) be an arbitrary point on the plane.

    Show that \(AX < BX\) if and only if \(X\) and \(A\) lie on the same side from \(\ell\).

    Hint

    截屏2021-02-03 下午4.48.18.png

    Assume \(X\) and \(A\) lie on the same side of \(\ell\).

    Note that \(A\) and \(B\) lie on opposite side of \(\ell\). Therefore, by Corollary 3.4.1, \([AX]\) does not intersect \(\ell\) and \([BX]\) intersects \(\ell\); suppose that \(Y\) denotes the intersection point.

    Note that \(BX = AY + YX \ge AX\). Since \(X \not\in \ell\), by Theorem \(\PageIndex{1}\) we have \(BX \ne BA\). Therefore \(BX > AX\).

    This way we proved the "if" part. To prove the "only if" part, you need to switch \(A\) and \(B\) and repeat the above argument.

    Exercise \(\PageIndex{2}\)

    Let \(ABC\) be a nondegenerate triangle. Show that

    \(AC > BC \Leftrightarrow |\measuredangle ABC| > |\measuredangle CAB|.\)

    Hint

    Apply Exercise \(\PageIndex{1}\), Theorem 4.2.1 and Exercise 3.1.2.


    This page titled 5.2: Perpendicular Bisector is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Anton Petrunin via source content that was edited to the style and standards of the LibreTexts platform.