# 1: Systems of Linear Equations- Algebra

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

## Chapter1Systems of Linear Equations: Algebra

##### Note

Solve a system of linear equations algebraically in parametric form.

This chapter is devoted to the algebraic study of systems of linear equations and their solutions. We will learn a systematic way of solving equations of the form

$\left\{\begin{array}{rrrrrrrrrrrrr} 3x_1 &+& 4x_2 &+& 10x_3 &+& 19x_4 &-& 2x_5 &-& 3x_6 &=& 141\\ 7x_1 &+& 2x_2 &-& 13x_3 &-& 7x_4 &+& 21x_5 &+& 8x_6 &=& 2567\\ -x_1 &+& 9x_2 &+& \frac 32x_3 &+& x_4 &+& 14x_5 &+& 27x_6 &=& 26\\ \frac 12x_1 &+& 4x_2 &+& 10x_3 &+& 11x_4 &+& 2x_5 &+& x_6 &=& -15 \end{array}\right. \nonumber$

In Section 1.1, we will introduce systems of linear equations, the class of equations whose study forms the subject of linear algebra. In Section 1.2, will present a procedure, called row reduction, for finding all solutions of a system of linear equations. In Section 1.3, you will see hnow to express all solutions of a system of linear equations in a unique way using the parametric form of the general solution.

This page titled 1: Systems of Linear Equations- Algebra is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Dan Margalit & Joseph Rabinoff via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.