Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

6.6: Division of Decimals

( \newcommand{\kernel}{\mathrm{null}\,}\)

Learning Objectives
  • understand the method used for dividing decimals
  • be able to divide a decimal number by a nonzero whole number and by another, nonzero, decimal number
  • be able to simplify a division of a decimal by a power of 10

The Logic Behind the Method

As we have done with addition, subtraction, and multiplication of decimals, we will study a method of division of decimals by converting them to fractions, then we will make a general rule.

We will proceed by using this example: Divide 196.8 by 6.

32   6¯)196.818     _16   12   _4   

We have, up to this point, divided 196.8 by 6 and have gotten a quotient of 32 with a remainder of 4. If we follow our intuition and bring down the .8, we have the division 4.8÷6.

4.8÷6=4810÷6=4810÷61=84810161=810

Thus, 4.8÷6=.8.

Now, our intuition and experience with division direct us to place the .8 immedi­ately to the right of 32.

Long division. 196.8 divided by 6. 6 goes into 19 3 times, with a remainder of 1. Bring the 6 down. 6 goes into 16 twice, with a remainder of 4. Bring the 8 down, and the decimal place with it. 6 goes into 48 8 times, with a remainder of zero. The quotient is 32.8 Notice that the decimal points appear in the same column.

From these observations, we suggest the following method of division.

A Method of Dividing a Decimal by a Nonzero Whole Number

Method of Dividing a Decimal by a Nonzero Whole Number
To divide a decimal by a nonzero whole number:

Write a decimal point above the division line and directly over the decimal point of the dividend.
Proceed to divide as if both numbers were whole numbers.
If, in the quotient, the first nonzero digit occurs to the right of the decimal point, but not in the tenths position, place a zero in each position between the decimal point and the first nonzero digit of the quotient.

Sample Set A

Find the decimal representations of the following quotients.

114.1÷7=7

Solution

16.37¯)114.17     _44   42   _2.12.1_0

Thus, 114.1÷7=16.3

Check: If 114.1÷7=16.3, then 716.3 should equal 114.1.

4.2   16.3       7_114.1 True.

Sample Set A

0.02068÷4

Solution

Long division. 0.02068 divided by 4. 4 goes into 20 5 times, with no remainder. 4 goes into 6 once, with a remainder of 2. Bring down the 8. 4 goes into 28 7 times, with a remainder of zero. The quotient is 0.00517.

Place zeros in the tenths and hundredths positions. (See Step 3.)

Thus, 0.02068÷4=0.00517.

Practice Set A

Find the following quotients.

184.5÷3

Answer

61.5

Practice Set A

16.956÷9

Answer

1.884

Practice Set A

0.2964÷4

Answer

0.0741

Practice Set A

0.000496÷8

Answer

0.000062

A Method of Dividing a Decimal By a Nonzero Decimal

Now that we can divide decimals by nonzero whole numbers, we are in a position to divide decimals by a nonzero decimal. We will do so by converting a division by a decimal into a division by a whole number, a process with which we are already familiar. We'll illustrate the method using this example: Divide 4.32 by 1.8.

Let's look at this problem as 432100÷1810.

=4321001810=4321001810

The divisor is 1810. We can convert 1810 into a whole number if we multiply it by 10.

181010=181011101=18

But, we know from our experience with fractions, that if we multiply the denomina­tor of a fraction by a nonzero whole number, we must multiply the numerator by that same nonzero whole number. Thus, when converting 1810 to a whole number by multiplying it by 10, we must also multiply the numerator 432100 by 10.

43210010=432100101101=4321101=43210=43210=43.2

We have converted the division 4.32÷1.8 into the division 43.2÷18, that's is,

1.8¯)4.3218¯)43.2

Notice what has occurred.

4.32 divided by 1.8. The decimal place in both numbers is moved to the right by one space.

If we "move" the decimal point of the divisor one digit to the right, we must also "move" the decimal point of the dividend one place to the right. The word "move" actually indicates the process of multiplication by a power of 10.

Method of Dividing a Decimal by a Decimal NumberTo divide a decimal by a nonzero decimal,

Convert the divisor to a whole number by moving the decimal point to the position immediately to the right of the divisor's last digit.
Move the decimal point of the dividend to the right the same number of digits it was moved in the divisor.
Set the decimal point in the quotient by placing a decimal point directly above the newly located decimal point in the dividend.
Divide as usual.

Sample Set B

Find the following quotients.

32.66÷7.1

Solution

7.1)32.66_

Long division. 32.66 divided by 7.1. Move the decimal place to the right for both numbers, making 326.6 divided by 71. 71 goes into 326 4 times, with a remainder of 42. Bring down the 6. 71 goes into 426 6 times, with a remainder of zero. The quotient is 4.6

The divisor has one decimal place.
Move the decimal point of both the divisor and the dividend 1 place to the right.
Set the decimal point.
Divide as usual.

Thus, 32.66÷7.1=4.6

Check: 32.66÷7.1=4.6 if 4.6×7.1=32.66

4.6×7.1_46322  _32.66 True.

Sample Set B

1.0773÷0.513

Solution

7.1)32.66_

Long division. 1.0773 divided by .513. Move the decimal place three spaces to the right. 513 goes into 1077 twice, with a remainder of 51. Bring down the 3. 513 goes into 513 exactly once. The quotient is 2.1.

The divisor has 3 decimal places.
Move the decimal point of both the divisor and the dividend 3 places to the right.
Set the decimal place and divide.

Thus, 1.0773÷0.513=2.1

Checking by multiplying 2.1 and 0.513 will convince us that we have obtained the correct result. (Try it.)

Sample Set B

12÷0.00032

Solution

0.00032)12.00000_

The divisor has 5 decimal places.
Move the decimal point of both the divisor and the dividend 5 places to the right. We will need to add 5 zeros to 12.
Set the decimal place and divide.

12 divided by 0.00032. The decimal place needs to be moved five spaces to the right, which means that five zeros need to be added to the right of the 12 to perform the subtraction.

his is now the same as the division of whole numbers.

37500.32¯)1200000.96         _240       224       _160     160     _000

Checking assures us that 12÷0.00032=37,500.

Practice Set B

Find the decimal representation of each quotient.

9.176÷3.1

Answer

2.96

Practice Set B

5.0838÷1.11

Answer

4.58

Practice Set B

16÷0.0004

Answer

40,000

Practice Set B

8,162.41÷10

Answer

816.241

Practice Set B

8,162.41÷100

Answer

81.6241

Practice Set B

8,162.41÷1,000

Answer

8.16241

Practice Set B

8,162.41÷10,000

Answer

0.816241

Calculators

Calculators can be useful for finding quotients of decimal numbers. As we have seen with the other calculator operations, we can sometimes expect only approximate results. We are alerted to approximate results when the calculator display is filled with digits. We know it is possible that the operation may produce more digits than the calculator has the ability to show. For example, the multiplication

0.123455 decimal places×0.45674 decimal places

produces 5+4=9 decimal places. An eight-digit display calculator only has the ability to show eight digits, and an approximation results. The way to recognize a possible approximation is illustrated in problem 3 of the next sample set.

Sample Set C

Find each quotient using a calculator. If the result is an approximation, round to five decimal places.

12.596÷4.7

Solution

    Display Reads
Type 12.596 12.596
Press ÷ 12.596
Type 4.7 4.7
Press = 2.68

Since the display is not filled, we expect this to be an accurate result.

Sample Set C

0.5696376÷0.00123

Solution

    Display Reads
Type .5696376 0.5696376
Press ÷ 0.5696376
Type .00123 0.00123
Press = 463.12

Since the display is not filled, we expect this result to be accurate.

Sample Set C

0.8215199÷4.113

Solution

    Display Reads
Type .8215199 0.8215199
Press ÷ 0.8215199
Type 4.113 4.113
Press = 0.1997373

There are EIGHT DIGITS — DISPLAY FILLED! BE AWARE OF POSSIBLE APPROXI­MATIONS.

We can check for a possible approximation in the following way. Since the division 3   4¯)12 can be checked by multiplying 4 and 3, we can check our division by performing the multiplication

4.1133 decimal places×0.19973737 decimal places

This multiplication produces 3+7=10 decimal digits. But our suspected quotient contains only 8 decimal digits. We conclude that the answer is an approximation. Then, rounding to five decimal places, we get 0.19974.

Practice Set C

Find each quotient using a calculator. If the result is an approximation, round to four decimal places.

42.49778÷14.261

Answer

2.98

Practice Set C

0.001455÷0.291

Answer

0.005

Practice Set C

7.459085÷2.1192

Answer

3.5197645 is an approximate result. Rounding to four decimal places, we get 3.5198

Dividing Decimals By Powers of 10

In problems 4 and 5 of Practice Set B, we found the decimal representations of 8,162.41÷10 and 8,162.41÷100. Let's look at each of these again and then, from these observations, make a general statement regarding division of a decimal num­ber by a power of 10.

816.24110¯)8162.41080           _16         10         _62       60       _24     20     _41   40   _10 10 _0 

Thus, 8,162.41÷10=816.241

Notice that the divisor 10 is composed of one 0 and that the quotient 816.241 can be obtained from the dividend 8,162.41 by moving the decimal point one place to the left.

81.6241100¯)8162.4100800           _162         100         _624       600       _241     200     _410   400   _100 100 _0 

Thus, 8,162.41÷100=81.6241.

Notice that the divisor 100 is composed of two 0's and that the quotient 81.6241 can be obtained from the dividend by moving the decimal point two places to the left.

Using these observations, we can suggest the following method for dividing decimal numbers by powers of 10.

Dividing a Decimal Fraction by a Power of 10
To divide a decimal fraction by a power of 10, move the decimal point of the decimal fraction to the left as many places as there are zeros in the power of 10. Add zeros if necessary.

Sample Set D

Find each quotient.

9,248.6÷100

Solution

Since there are 2 zeros in this power of 10, we move the decimal point 2 places to the left.

9248.6 divided by 100 is equal to 92.480. Notice that the only effect is the movement of a decimal two places to the left of 9248.6.

Sample Set D

3.28÷10,000

Solution

Since there are 4 zeros in this power of 10, we move the decimal point 4 places to the left. To do so, we need to add three zeros.

3.28 divided by 10,000 is equal to 0.000328. Notice that the only effect is the movement of a decimal four places to the left of 0003.28.

Practice Set D

Find the decimal representation of each quotient.

182.5÷10

Answer

18.25

Practice Set D

182.5÷100

Answer

1.825

Practice Set D

182.5÷1,000

Answer

0.1825

Practice Set D

182.5÷10,000

Answer

0.01825

Practice Set D

646.18÷100

Answer

6.4618

Practice Set D

21.926÷1,000

Answer

0.021926

Exercises

For the following 30 problems, find the decimal representation of each quotient. Use a calculator to check each result.

Exercise 6.6.1

4.8÷3

Answer

1.6

Exercise 6.6.2

16.8÷8

Exercise 6.6.3

18.5÷5

Answer

3.7

Exercise 6.6.4

12.33÷3

Exercise 6.6.5

54.36÷9

Answer

6.04

Exercise 6.6.6

73.56÷12

Exercise 6.6.7

159.46÷17

Answer

9.38

Exercise 6.6.8

12.16÷64

Exercise 6.6.9

37.26÷81

Answer

0.46

Exercise 6.6.10

439.35÷435

Exercise 6.6.11

36.98÷4.3

Answer

8.6

Exercise 6.6.12

46.41÷9.1

Exercise 6.6.13

3.6÷1.5

Answer

2.4

Exercise 6.6.14

0.68÷1.7

Exercise 6.6.15

60.301÷8.1

Answer

6.21

Exercise 6.6.16

2.832÷0.4

Exercise 6.6.17

4.7524÷2.18

Answer

2.18

Exercise 6.6.18

16.2409÷4.03

Exercise 6.6.19

1.002001÷1.001

Answer

1.001

Exercise 6.6.20

25.050025÷5.005

Exercise 6.6.21

12.4÷3.1

Answer

4

Exercise 6.6.22

0.48÷0.08

Exercise 6.6.23

30.24÷2.16

Answer

14

Exercise 6.6.24

48.87÷0.87

Exercise 6.6.25

12.321÷0.111

Answer

111

Exercise 6.6.26

64,351.006÷10

Exercise 6.6.27

64,351.006÷100

Answer

643.51006

Exercise 6.6.28

64,351.006÷1,000

Exercise 6.6.29

64,351.006÷1,000,000

Answer

0.064351006

Exercise 6.6.30

0.43÷100

For the following 5 problems, find each quotient. Round to the specified position. A calculator may be used.

Exercise 6.6.31

11.2944÷6.24

Actual Quotient Tenths Hundredths Thousandths
       
Answer
Actual Quotient Tenths Hundreds Thousandths
1.81 1.8 1.81 1.810

Exercise 6.6.32

45.32931÷9.01

Actual Quotient Tenths Hundredths Thousandths
       

Exercise 6.6.33

3.18186÷0.66

Actual Quotient Tenths Hundredths Thousandths
       
Answer
Actual Quotient Tenths Hundreds Thousandths
4.821 4.8 4.82 4.821

Exercise 6.6.34

4.3636÷4

Actual Quotient Tenths Hundredths Thousandths
       

Exercise 6.6.35

0.00006318÷0.018

Actual Quotient Tenths Hundredths Thousandths
       
Answer
Actual Quotient Tenths Hundreds Thousandths
0.00351 0.0 0.00 0.004

For the following 9 problems, find each solution.

Exercise 6.6.36

Divide the product of 7.4 and 4.1 by 2.6.

Exercise 6.6.37

Divide the product of 11.01 and 0.003 by 2.56 and round to two decimal places.

Answer

0.01

Exercise 6.6.38

Divide the difference of the products of 2.1 and 9.3, and 4.6 and 0.8 by 0.07 and round to one decimal place.

Exercise 6.6.1

A ring costing $567.08 is to be paid off in equal monthly payments of $46.84. In how many months will the ring be paid off?

Answer

12.11 months

Exercise 6.6.39

Six cans of cola cost $2.58. What is the price of one can?

Exercise 6.6.1

A family traveled 538.56 miles in their car in one day on their vacation. If their car used 19.8 gallons of gas, how many miles per gallon did it get?

Answer

27.2 miles per gallon

Exercise 6.6.40

Three college students decide to rent an apartment together. The rent is $812.50 per month. How much must each person contribute toward the rent?

Exercise 6.6.41

A woman notices that on slow speed her video cassette recorder runs through 296.80 tape units in 10 minutes and at fast speed through 1098.16 tape units. How many times faster is fast speed than slow speed?

Answer

3.7

Exercise 6.6.42

A class of 34 first semester business law students pay a total of $1,354.90, disregarding sales tax, for their law textbooks. What is the cost of each book?

Calculator Problems
For the following problems, use calculator to find the quotients. If the result is approximate (see Sample Set C) round the result to three decimal places.

Exercise 6.6.43

3.8994÷2.01

Answer

1.94

Exercise 6.6.44

0.067444÷0.052

Exercise 6.6.45

14,115.628÷484.74

Answer

29.120

Exercise 6.6.46

219,709.36÷9941.6

Exercise 6.6.47

0.0852092÷0.49271

Answer

0.173

Exercise 6.6.48

2.4858225÷1.11611

Exercise 6.6.49

0.123432÷0.1111

Answer

1.111

Exercise 6.6.50

2.102838÷1.0305

Exercises for Review

Exercise 6.6.51

Convert 478 to an improper fraction.

Answer

398

Exercise 6.6.52

27 of what number is 45?

Exercise 6.6.53

Find the sum. 415+710+35.

Answer

4730 or 11730

Exercise 6.6.54

Round 0.01628 to the nearest ten-thousandths.

Exercise 6.6.55

Find the product (2.06)(1.39)

Answer

2.8634


This page titled 6.6: Division of Decimals is shared under a CC BY license and was authored, remixed, and/or curated by Denny Burzynski & Wade Ellis, Jr. (OpenStax CNX) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?