Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

5.4e: Exercises - Other Trigonometric Functions

( \newcommand{\kernel}{\mathrm{null}\,}\)

A: Concepts

Exercise 5.4e.A

1) On an interval of [0,2π), can the sine and cosine values of a radian measure ever be equal? If so, where?

2) What would you estimate the cosine of π degrees to be? Explain your reasoning.

3) For any angle in quadrant II, if you knew the sine of the angle, how could you determine the cosine of the angle?

4) Describe the secant function.

Answers to Odd Problems

1. Yes, when the reference angle is π4 and the terminal side of the angle is in quadrants I and III. Thus, at x=π4,5π4, the sine and cosine values are equal.
3. Substitute the sine of the angle in for y in the Pythagorean Theorem x2+y2=1. Solve for x and take the negative solution.

B: Given a point

Exercise 5.4e.B 

 Given the following point on the terminal side of an angle θ, find the value of each of the six trigonometric functions.

5.   (5,2) 6.   (4,2) 7.   (1,7) 8.   (23,5)

 For the below, use the angle in the unit circle to find the value of each of the six trigonometric functions.

9.

This is an image of a graph of circle with angle of t inscribed. Point of (square root of 2 over 2, square root of 2 over 2) is at intersection of terminal side of angle and edge of circle.

10.

This is an image of a graph of circle with angle of t inscribed. Point of (square root of 3 over 2, 1/2) is at intersection of terminal side of angle and edge of circle.

11.

This is an image of a graph of circle with angle of t inscribed. Point of (-1/2, negative square root of 3 over 2) is at intersection of terminal side of angle and edge of circle.

Answers to Odd Problems

5. sinθ=23,    cosθ=53,    tanθ=255,    cscθ=32,    secθ=355,   cotθ=52
7. sinθ=144,    cosθ=24,    tanθ=7,    cscθ=2147,    secθ=22,   cotθ=77
9. sint=22,    cost=22,    tant=1,    cott=1,    sect=2,    csct=2
11. sint=32,    cost=12,    tant=3,    cott=33,    sect=2,    csct=233

C: Get information about an angle from the sign of its trigonometric ratio

Exercise 5.4e.C

 State the quadrant or quadrants for which the following conditions are true.

15.  Sine and cosine have the same sign.

16.  Sine and cosine have the opposite sign.

17.  Sine and tangent have the same sign.

18.  Sine and tangent have the opposite sign.

19.  Cosine and tangent have the same sign.

20.  Cosine and tangent have the opposite sign.

Answers to Odd Problems

15.  QI  or QIII    17.  QI or QIV     19.   QI or QII 

D: Given one ratio and information to find which quadrant the angle is in

Exercise 5.4e.D

Given one trigonometric ratio and information about the angle, find the other five trigonometric ratios.

21. sin(θ)=34,  θ in quadrant II

22. csc(θ)=72, θ in quadrant IV

23. cos(θ)=13, θ in quadrant III

24. sec(θ)=5,  θ in quadrant II

25. tan(θ)=125πθ<3π2

26. cot(θ)=4π2θ<π

27. sec(θ)=7π2<θ<π

28. csc(θ)=73πθ<3π2

29. cot(θ)=43cscθ<0

30. tan(θ)=7secθ>0

31. csc(θ)=4cotθ<0

32. sec(θ)=52sinθ<0

Answers to Odd Problems

21. cos(θ)=74, tan(θ)=377, csc(θ)=43, sec(θ)=477, cot(θ)=73

23. sin(θ)=223, tan(θ)=22, csc(θ)=324, sec(θ)=3, cot(θ)=24 

25. sin(θ)=1213, cos(θ)=513, csc(θ)=1312, sec(θ)=135, cot(θ)=512

27. sin(θ)=437, cos(θ)=17, tan(θ)=43, csc(θ)=7312, sec(θ)=7, cot(θ)=312

29. sin(θ)=35, cos(θ)=45, tan(θ)=34, csc(θ)=53, sec(θ)=54, cot(θ)=43

31. sin(θ)=14, cos(θ)=154, tan(θ)=1515, csc(θ)=4, sec(θ)=41515, cot(θ)=15

E: Find quadrants or axes where a ratio is the same; find other ratios for each location

Exercise 5.4e.E

 Find the quadrants or axes and exact values of sinθ and tanθ when cosθ has the indicated value

41.  cosθ=12 42.  cosθ=12 43.  cosθ=0 44.  cosθ=25 45.  cosθ=1

 Find the quadrants or axes and the exact values of cosθ and tanθ when sinθ has the indicated value.

46.  sinθ=12 47.  sinθ=12 48.  sinθ=0 49.   sinθ=23 50.  sinθ=1

 Find the quadrants or axes and the exact values of sinθ and cosθ when tanθ has the indicated value.

51.  tanθ=12 52.  tanθ=12 53.  tanθ=0 54.  tanθ=512 55.  tanθ=1
Answers to Odd Problems:

41.  QI: sinθ=32, tanθ=3    or    QIV: sinθ=32, tanθ=3
43.  positive y-axis: sinθ=1, tanθ = undefined   or  negative y-axis: sinθ=1, tanθ = undefined
45.  positive x-axis: sinθ=0, tanθ=0   or  negative x-axis: sinθ=0, tanθ=0
47.  QIII: cosθ=32, tanθ=33    or    QIV: cosθ=32, tanθ=33
49.  QIII: cosθ=53, tanθ=255    or    QIV: cosθ=53, tanθ=255
51.  QI: sinθ=55,  cosθ=255   or    QIII: sinθ=55,  cosθ=255
53.  positive x-axis: sinθ=0, cosθ=1   or  negative x-axis: sinθ=0, cosθ=1
55.   QI: sinθ=22,  cosθ=22   or    QIII: sinθ=22,  cosθ=22

F: Use identities to find other trig ratios from two given ratios

Exercise 5.4e.F 

61. If sint=32 and cost=12, find sect,csct,tant, and cott.

62. If \sin 40°≈0.643 \; \cos 40°≈0.766 \; \sec 40°,\csc 40°,\tan 40°, \text{ and } \cot 40°.

63. If \tan (t)≈1.3, and \cos (t)≈0.61, find \sin (t).

64. If \tan (t)≈2.7, and \sin (t)≈0.94, find \cos (t).

65. If \cot (t)≈0.58, and \cos (t)≈0.5, find \csc (t).

66. If \csc (t)≈3.2, and   \cos (t)≈0.95, find \tan (t).

67. Use identities to simplify \dfrac{\sec t}{ \csc t}

68. Use identities to simplify \csc t \tan t

70. Use the given information and identities to find the value of the other five trigonometric functions

a. \sin \left(\theta \right)= - \dfrac{1}{3},  \theta in quadrant IV

b. \csc \left(\theta \right)=  \dfrac{5}{3}, \theta in quadrant I

c. \cos \left(\theta \right)= \dfrac{1}{4}, \theta in quadrant IV

d. \sec \left(\theta \right)= -4,  \theta in quadrant II

e. \tan \left(\theta \right)= 5 , \theta in quadrant III

f. \cot \left(\theta \right)=- \dfrac{1}{6} ,  \theta in quadrant II

Answers to Odd Problems:

61. \sec t=2, \csc t=\frac{2\sqrt{3}}{3}, \tan t= \sqrt{3}, \cot t= \frac{\sqrt{3}}{3}    63. \sin (t)≈0.79 \quad 65. \csc (t)≈1.16  67. \tan t.

G: Quadrants and Reference angles

Exercise \PageIndex{G}

\bigstar  State in which quadrant or on which axis the given angle lies.

71.  127^\circ

72.  -127^\circ
73.   313^\circ

74.  -313^\circ
75.  -90^\circ

76.  621^\circ
77.   230^\circ

78.  2009^\circ
79.  1079^\circ

80  -514^\circ

\bigstar  Find the reference angle for the given angle.

81.  317^\circ 82.  63^\circ 83.  -126^\circ 84.  696^\circ 85.  275^\circ
Answers to Odd Problems:

71.   QII      73.   QIV     75.   on negative y-axis     77.   QIII     79.   QIV     81.  43^\circ      83.   54^\circ      85.    85^\circ  

H: Evaluate trig ratios for Multiples of "Special" Angles

Exercise \PageIndex{H}

\bigstar  Find the exact value of each expression.

89. \cos \dfrac{π}{6} \\[2pt]

90. \sin \dfrac{π}{6}

91. \cot \dfrac{π}{6} \\[2pt]

92. \tan \dfrac{π}{6}

93. \csc \dfrac{π}{4} \\[2pt]

94. \sec \dfrac{π}{4}

95. \tan \dfrac{π}{4} \\[2pt]

96. \cos \dfrac{π}{4}

97. \sec \dfrac{π}{3} \\[2pt]

98. \csc \dfrac{π}{3}

99. \sin \dfrac{π}{3} \\[2pt]

100. \cot \dfrac{π}{3}

Answers to Odd Problems

89. \frac{\sqrt{3}}{2} \qquad 91. \sqrt{3} \qquad 93. \sqrt{2} \qquad 95. 1 \qquad 97. 2 \qquad 99. \frac{\sqrt{3}}{2}

\bigstar  Use reference angles to evaluate the expression.

101.  \sec \dfrac{7π}{6}

102.  \tan \dfrac{5π}{6}

103.  \cot \dfrac{13π}{6}

104.  \csc \dfrac{11π}{6}

105.  \sec \dfrac{3π}{4}

106.  \tan \dfrac{7π}{4}

107.  \cot \dfrac{19π}{4}

108.  \csc \dfrac{11π}{4}

109.  \csc \dfrac{10π}{3}

110.  \cot  \dfrac{10π}{3}

111. \tan  \dfrac{11π}{3}

112.  \sec   \dfrac{5π}{3}

113.  \sec 300°

114.  \tan 225°

115.  \cot 240°

116.  \csc 150°

117.  \sec 120°

118.  \tan 330°

119.  \cot 315°

120.  \csc 210°

\bigstar   For each of the following angles, find exact values for \sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)\;.

121.  \theta =\dfrac{5\pi \; }{6} 122.  \theta =\dfrac{7\pi \; }{4} 123.  \theta =\dfrac{2\pi \; }{3} 124.  \theta =\dfrac{4\pi \; }{3}

\bigstar   Evaluate the following expressions exactly.

125.  a. \sec \left(135{}^\circ \right)  b. \csc \left(210{}^\circ \right)  c. \tan \left(60{}^\circ \right)   d. \cot \left(225{}^\circ \right) 126. a. \sec \left(30{}^\circ \right)   b. \csc \left(315{}^\circ \right)  c. \tan \left(135{}^\circ \right)  d. \cot \left(150{}^\circ \right)
Answers to Odd Problems

101. −\frac{2\sqrt{3}}{3} \;\; 103. \sqrt{3} \;\; 105. −\sqrt{2} \;\; 107. −1 \quad \;\; 109. -\dfrac{2\sqrt{3}}{3} \;\; 111. −\sqrt{3} \;\; 113. 2 \;\; 115. \frac{\sqrt{3}}{3} \;\; 117. −2 \;\; 119. −1.

121. \text{sec} (\theta) = -\frac{2\sqrt{3}}{3}, \text{csc} (\theta) = 2, \text{tan} (\theta) = -\frac{\sqrt{3}}{3}, \text{cot} (\theta) = -\sqrt{3}

123. \text{sec} (\theta) = -2, \text{csc} (\theta) = \frac{2\sqrt{3}}{3}, \text{tan} (\theta) = -\sqrt{3}, \text{cot} (\theta) = -\frac{\sqrt{3}}{3}

125. a. \text{sec} (135^{\circ}) = -\sqrt{2} \quad b. \text{csc} (210^{\circ}) = -2 \quad c. \text{tan} (60^{\circ}) = \sqrt{3} \quad d. \text{cot} (225^{\circ}) = 1

I: Use a calculator

Exercise \PageIndex{I}

\bigstar   Use a calculator to evaluate to three decimal digits.

131.  \cot \dfrac{4π}{7} \\[2pt]

132.  \csc \dfrac{5π}{9}

133.  \tan \dfrac{5π}{8} \\[2pt]

134.  \sec \dfrac{π}{10} 

135.  \csc \dfrac{π}{4} \\[2pt]

136.  \sec \dfrac{3π}{4}

137.  \cot 33° \\[6pt]

138.  \tan 98°

139.  \sec 310° \\[6pt]

140.  \cot 140°

\bigstar   Use a calculator to find secant, cosecant, and cotangent of the following angles to four decimal digits:

141.  0.15

142.  0.5

143.  4

144.  5.2

145.  70\mathrm{{}^\circ}

146.  10\mathrm{{}^\circ}

147.  283\mathrm{{}^\circ}

148.  195\mathrm{{}^\circ}

Answers to Odd Problems

131. –0.228 \qquad 133. –2.414 \qquad 135. 1.414 \qquad 137. 1.540 \qquad 139. 1.556

141. \csc(0.15) = 6.6917 \qquad \sec(0.15) = 1.0114 \qquad \cot(0.15) = 6.6166
143. \csc(4) = -1.3213    \quad \;\; \sec(4) = -1.5299    \quad \;\; \cot(4) = 0.8637
145. \csc( 70^{\circ}) = 1.0642    \qquad \sec(70^{\circ}) = 2.9238   \qquad \cot(70^{\circ}) = 0.3640
147. \csc( 283^{\circ} ) = -1.0263  \quad \;\; \sec( 283^{\circ} ) = 4.4454  \quad \;\; \cot( 283^{\circ} ) = -0.2309

J: Symmetry, Even/Odd Identities, Cofunction Identities

Exercise \PageIndex{J}

151. If \sin (t)= \dfrac{\sqrt{2}}{2}, what is the \sin (−t)?

152. If \cos (t)= \dfrac{1}{2}, what is the \cos (−t)?

153. If \sec (t)=3.1, what is the \sec (−t)?

154. If \csc (t)=0.34, what is the \csc (−t)?

155. If \tan (t)=−1.4, what is the \tan (−t)?

156. If \cot (t)=9.23, what is the \cot (−t)?

\bigstar   Determine whether the function is even, odd, or neither.

157. f(x)=3 \sin ^2 x \cos x + \sec x

158. f(x)=2 \sin x \cos x

159. f(x)= \csc ^2 x+ \sec x

160. f(x)= \sin x −2 \cos ^2 x

Answers to Odd Problems

151. −\frac{\sqrt{2}}{2} \qquad 153. 3.1 \qquad 155. 1.4 \qquad 157. even \qquad 159. even \qquad.

\bigstar   Use cofunctions of complementary angles.

161.   \cos \left(\dfrac{2π}{7} \right)= \_\_\_ (\_\_\_) 162.   \sin (76°)= \_\_\_ (\_\_°) 163.   \csc (38°) = \_\_\_ (\_\_\_°) 164.  \tan \left(\dfrac{3π}{5}\right)= \_\_\_ (\_\_)

\bigstar   Use reciprocal, quotient, and Pythagorean Identities to determine the following.

171. Given \sin \theta = 0.4 ,  find     (a) \cos \theta      (b) \tan\theta      (c) \csc \theta

172. Given \cos \theta = 0.7 , find     (a) \sin \theta      (b) \sec \theta      (c) \cot \theta

173. Given \tan \theta = 2 ,   find     (a) \cot \theta      (b) \sec \theta      (c) \cos \theta

174. Given \csc \theta = 3 ,   find     (a) \sin \theta      (b) \cot \theta      (c) \tan \theta

175. Given \sec \theta = 4 ,   find     (a) \cos \theta      (b) \sin \theta      (c) \tan \theta

176. Given \cot \theta = 5 ,   find     (a) \tan \theta      (b) \csc \theta      (c) \sec \theta

Answers to Odd Problems

161. \sin \dfrac{3π}{14}     163.  \sec (52°).      171. (a) \pm \: .2\sqrt{21} \approx \pm \: 0.9165,  (b) \pm \frac{2}{\sqrt{21}} \approx \pm \: .4364 , (c) 2.5 
173. (a) 0.5,  (b) \pm \sqrt{5} \approx \pm \: 2.236 , (c) \pm \frac{\sqrt{5}}{5} \approx \pm \: .447      175. (a) 0.25,  (b) \pm \frac{\sqrt{15}}{4} \approx \pm \: .968 , (c) \pm \sqrt{15} \approx \pm \: 3.873 

\star


5.4e: Exercises - Other Trigonometric Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?