Skip to main content
Mathematics LibreTexts

3.1e: Exercises - Quadratic Functions

  • Page ID
    45444
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A: Concepts

    Exercise \(\PageIndex{A}\) 

    1) Explain the advantage of writing a quadratic function in standard form.

    2) How can the vertex of a parabola be used in solving real world problems?

    3) Explain why the condition of \(a≠0\) is imposed in the definition of the quadratic function.

    4) What is another name for the standard form of a quadratic function?

    5) What two algebraic methods can be used to find the horizontal intercepts of a quadratic function?

    Answers to Odd Examples:

    1. When written in that form, the vertex can be easily identified.

    3. If \(a=0\) then the function becomes a linear function.

    5. If possible, we can use factoring. Otherwise, we can use the quadratic formula.Add texts here.

    B: Parabola Orientation

    Exercise \(\PageIndex{B}\) 

    \( \bigstar \) Determine if the parabola opens up or down.

    7.  a.  \(f(x)=-2 x^{2}-6 x-7\)
    \( \quad \) b.  \(f(x)=6 x^{2}+2 x+3\)

     

    8.  a.  \(f(x)=4 x^{2}+x-4\)
    \( \quad \) b.  \(f(x)=-9 x^{2}-24 x-16\)

    9.  a.  \(f(x)=-3 x^{2}+5 x-1\)
    \( \quad \) b.  \(f(x)=2 x^{2}-4 x+5\)

     

    10.  a.  \(f(x)=x^{2}+3 x-4\)
    \( \quad \) b.  \(f(x)=-4 x^{2}-12 x-9\)

    11. \(y=x^{2}-9 x+20\)
    12. \(y=x^{2}-12 x+32\)
    13. \(y=-2 x^{2}+5 x+12\)
    14. \(y=-6 x^{2}+13 x-6\)
    15. \(y=64-x^{2}\)
    16. \(y=-3 x+9 x^{2}\)

    Answers to Odd Examples:
    7. a.  down    b.  up 9. a.  down    b.  up 11. Upward 13. Downward 15. Downward

    C: Vertex and Axis of Symmetry

    Exercise \(\PageIndex{C}\) 

    \( \bigstar \) Determine the vertex.

    17. \(y=-(x-5)^{2}+3\)

    18. \(y=-2(x-1)^{2}+7\)

    19. \(y=5(x+1)^{2}+6\)

    20. \(y=3(x+4)^{2}+10\)

    21. \(y=-5(x+8)^{2}-1\)

    22. \(y=(x+2)^{2}-5\)

    \( \bigstar \) Find the vertex and the axis of symmetry.

    23.  \(f(x)=x^{2}+8 x-1\)

    24.  \(f(x)=x^{2}+10 x+25\)

    25.  \(f(x)=-x^{2}+2 x+5\)

    26.  \(f(x)=-2 x^{2}-8 x-3\)

    27. \(y=-x^{2}+10 x-34\)

    28. \(y=-x^{2}-6 x+1\)

    29. \(y=-4 x^{2}+12 x-7\)

    30. \(y=-9 x^{2}+6 x+2\)

    31. \(y=4 x^{2}-1\)

    32. \(y=x^{2}-16\)

    Answers to Odd Examples

    17. \((5, 3)\)

    19. \((−1, 6)\)

    21. \((−8, −1)\)

    23. Vertex: \((-4,-17)\), Axis of symmetry: \(x=-4\)

    25.  Vertex: \((1, 6)\),  Axis of symmetry: \(x=1\)

    27. Vertex: \((5,-9)\); axis of symmetry: \(x=5\)

    29. Vertex: \(\left(\frac{3}{2}, 2\right)\); axis of symmetry: \(x=\frac{3}{2}\)

    31. Vertex: \((0,-1)\); axis of symmetry: \(x=0\)

    D: Domain and Range

    Exercise \(\PageIndex{D}\) 

    \( \bigstar \) Use the vertex of the graph of the quadratic function and the direction the graph opens to find the domain and range of the function.

    33) Vertex \((1,−2)\),
    opens up.
    34) Vertex \((−1,2)\)
    opens down.
    35) Vertex \((−5,11)\),
    opens down.
    36) Vertex \((−100,100)\),
    opens up.

    \( \bigstar \) Given the following quadratic functions, determine the domain and range.

    37. \(f(x)=3 x^{2}+30 x+50\)

    38. \(f(x)=5 x^{2}-10 x+1\)

    39. \(g(x)=-2 x^{2}+4 x+1\)

    40. \(g(x)=-7 x^{2}-14 x-9\)

    41. \(f(x)=x^{2}+x-1\)

    42. \(f(x)=-x^{2}+3 x-2\)

    43) \(f(x)=(x−3)^2+2\)

    44) \(f(x)=−2(x+3)^2−6\)

    45) \(f(x)=x^2+6x+4\)

    46) \(f(x)=2x^2−4x+2\)

    47) \(k(x)=3x^2−6x−9\)

     

    Answers to Odd Examples:

    33. Domain is \((−∞,∞)\). Range is \([−2,∞)\).

    35. Domain is \((−∞,∞)\) Range is \((−∞,11]\).

    37. Domain: \((−∞, ∞)\); range:\([−25, ∞)\)

    39. Domain: \((−∞, ∞)\); range: \((−∞, 3]\)

    41. Domain: \((−∞, ∞)\); range: \([−\frac{5}{4}, ∞)\)

    43. Domain is \((−∞,∞)\). Range is \([2,∞)\).

    45. Domain is \((−∞,∞)\). Range is \([−5,∞)\).

    47. Domain is \((−∞,∞)\). Range is \([−12,∞)\).

    E: Minimum or maximum Value

    Exercise \(\PageIndex{E}\) 

    \( \bigstar \) In the following exercises, find the maximum or minimum value of each function.

    49.  \(f(x)=2 x^{2}+x-1\)

    50.  \(y=-4 x^{2}+12 x-5\)

    51.  \(y=x^{2}-6 x+15\)

    52.  \(y=-x^{2}+4 x-5\)

    53.  \(y=-9 x^{2}+16\)

    54.  \(y=4 x^{2}-49\)

    55. \(y=-x^{2}-6 x+1\)

    56. \(y=-x^{2}-4 x+8\)

    57. \(y=25 x^{2}-10 x+5\)

    58. \(y=16 x^{2}-24 x+7\)

    59. \(y=-x^{2}\)

    60. \(y=1-9 x^{2}\)

    61. . \(y=20 x-10 x^{2}\)

    62. \(y=12 x+4 x^{2}\)

    63. \(y=3 x^{2}-4 x-2\)

    64. \(y=6 x^{2}-8 x+5\)

    65. \(y=x^{2}-5 x+1\)

    66. \(y=1-x-x^{2}\)

    \( \bigstar \) Determine whether there is a minimum or maximum value to each quadratic function. Find the value and the axis of symmetry.

    68. \(y(x)=2x^2+10x+12\)

    69. \(f(x)=2x^2−10x+4\)

    70. \(f(x)=−x^2+4x+3\)

    71. \(f(x)=4x^2+x−1\)

    72. \(h(t)=−4t^2+6t−1\)

    73) \(f(x)=\dfrac{1}{2}x^2+3x+1\)

    74) \(f(x)=−\dfrac{1}{3}x^2−2x+3\)

    Answers to Odd Examples:

    49. The minimum value is \(−\frac{9}{8}\) when \(x=−\frac{1}{4}\).

    51. The minimum value is \(6\) when \(x=3\).

    53. The maximum value is \(16\) when \(x=0\).

    55. Maximum: \(y = 10\)

    57. Minimum: \(y = 4\) when \( x = \frac{1}{5}\)

    59. Maximum: \(y = 0\)

    61. Maximum: \(y = 10\)

    63. Minimum: \(y = −\frac{10}{3}\)

    65. Minimum: \(y = −\frac{21}{4}\)

    69. Minimum is \(−\frac{17}{2}\) and occurs at \(\frac{5}{2}\).
          Axis of symmetry is \(x=\frac{5}{2}\).

    71. Minimum is \(−\frac{17}{16}\) and occurs at \(−\tfrac{1}{8}\).
    \( \qquad  \) Axis of symmetry is \(x=−\frac{1}{8}\).

    73. Minimum is \(−\frac{7}{2}\) and occurs at \(−3\).
    \( \qquad  \) Axis of symmetry is \(x=−3\).

    F: Intercepts

    Exercise \(\PageIndex{F}\) 

    \( \bigstar \) Determine the \(x\)- and \(y\)-intercepts of each function.

    75.  \(f(x)=x^{2}+7 x+6\)

    76.  \(f(x)=x^{2}+10 x-11\)

    77.  \(f(x)=x^{2}+8 x+12\)

    78.  \(f(x)=x^{2}+5 x+6\)

    79.  \(f(x)=-x^{2}+8 x-19\)

    80.  \(f(x)=-3 x^{2}+x-1\)

    81.  \(f(x)=x^{2}+6 x+13\)

    82.  \(f(x)=x^{2}+8 x+12\)

    83.  \(f(x)=4 x^{2}-20 x+25\)

    84.  \(f(x)=-x^{2}-14 x-49\)

    85.  \(f(x)=-x^{2}-6 x-9\)

    86.  \(f(x)=4 x^{2}+4 x+1\)

    87. \(y=x^{2}+4 x-12\)

    88. \(y=x^{2}-13 x+12\)

    89. \(y=2 x^{2}+5 x-3\)

    90. \(y=3 x^{2}-4 x-4\)

    91. \(y=-5 x^{2}-3 x+2\)

    92. \(y=-6 x^{2}+11 x-4\)

    93. \(y=4 x^{2}-27\)

    94. \(y=9 x^{2}-50\)

    95. \(y=x^{2}-x+1\)

    96. \(y=x^{2}-6 x+4\)

    97) \(g(x) = x(x−4)-20\)

    98) \(g(x) = x(x−2)-10\)

    Answers to Odd Examples:

    75. \(y\)-intercept: \((0,6)\); \(x\)-intercept(s): \((-1,0), (-6,0)\)

    77. \(y\)-intercept: \((0,12)\); \(x\)-intercept(s): \((-2,0), (-6,0)\)

    79. \(y\)-intercept: \((0,-19)\); \(x\)-intercept(s): none

    81. \(y\)-intercept: \((0,13)\); \(x\)-intercept(s): none

    83. \(y\)-intercept: \((0, 25)\); \(x\)-intercept(s): \((\frac{5}{2},0)\)

    85. \(y\)-intercept: \((0,9)\); \(x\)-intercept(s): \((-3,0)\)

     

    87. \(x\)-intercepts: \((-6,0),(2,0)\); \(y\)-intercept: \((0,-12)\)

    89. \(x\)-intercepts: \((-3,0),\left(\frac{1}{2}, 0\right)\); \(y\)-intercept: \((0,-3)\)

    91. \(x\)-intercepts: \((-1,0),\left(\frac{2}{5}, 0\right)\); \(y\)-intercept: \((0,2)\)

    93. \(x\)-intercepts: \(\left(-\frac{3 \sqrt{3}}{2}, 0\right),\left(\frac{3 \sqrt{3}}{2}, 0\right)\); \(y\)-intercept: \((0,-27)\)

    95. \(x\)-intercepts: none; \(y\)-intercept: \((0,1)\)

    97. \(x\)-intercepts: \({2+2 \sqrt{6}, 2−2\sqrt{6}}\); \(y\)-intercept: \((0,-20)\)

    G: Graph Quadratic Functions

    Exercise \(\PageIndex{G}\) 

    \( \bigstar \)  Sketch a graph of the quadratic function and give the vertex, axis of symmetry, and intercepts.

    99) \(f(x)=x^2−2x\)

    100) \(f(x)=x^2−6x−1\)

    101) \(f(x)=x^2−5x−6\)

    102) \(f(x)=x^2−7x+3\)

    103) \(f(x)=−2x^2+5x−8\)

     

    105) \(f(x)=4x^2−12x−3\)

     

    \( \bigstar \) Sketch each quadratic function below

    107. \(f(x)=x^{2}-10 x\)

    108. \(f(x)=x^{2}+8 x\)

    109. \(f(x)=x^{2}-9\)

    110. \(f(x)=x^{2}-25\)

    111. \(f(x)=1-x^{2}\)

    112. \(f(x)=4-x^{2}\)

    113. \(f(x)=x^{2}-2\)

    114. \(f(x)=x^{2}-3\)

    115. \(f(x)=-2 x^{2}+3\)

    116. \(f(x)=-2 x^{2}-1\)

    117. \(f(x)=x^{2}-1\)

    118. \(f(x)=x^{2}+1\)

    121. n/a

    122.  \(f(x)=\tfrac{1}{3} x^{2}-3\)

    123. n/a

    124.  \(f(x)=5 x^{2}+2\)

    Answers to Odd Examples:
     

    99.

    CNX_Precalc_Figure_03_02_201.jpg

    Vertex \((1, −1)\),
    Axis of symmetry is \(x=1\).
    Intercepts: \((0,0), \; (2,0)\)

    101.

    CNX_Precalc_Figure_03_02_203.jpg

    Vertex \(\left(\tfrac{5}{2},\tfrac{−49}{4}\right)\),
    Axis of symmetry is \(x=\tfrac{5}{2}\).
    Intercepts: \((0,−6), \; (−1,0), \; (6,0)\)

    103.

    CNX_Precalc_Figure_03_02_205.jpg

    Vertex \(\left(\tfrac{5}{4}, −\tfrac{39}{8}\right)\),
    Axis of symmetry is \(x=\tfrac{5}{4}\).
    Intercepts: \((0, −8)\)

    105.

    CNX_Precalc_Figure_03_02_206.jpg

    Vertex  \(\left(\tfrac{3}{2}, −12 \right),\)  
    Axis of symmetry is \(x=\frac{3}{2},\)
    Intercepts: \( \left( \tfrac{3}{2} \pm \sqrt{3} , 0 \right), \)  \((0, -3)\)

    107.

    Figure 107

    109.

    Figure 109  

    111.

    Figure 111

    113.

    Figure 113  

    115.

    Figure 115

    117.

    Figure 117
       

    \( \bigstar \) Sketch each quadratic function below

    125.  \(f(x)=-x^{2}+2 x-7\)

    126. \(f(x)=-x^{2}+2 x-4\)

    127. \(f(x)=x^{2}-2 x-8\)

    128. \(f(x)=-x^{2}-2 x+15\)

    129. \(f(x)=x^{2}+3 x+4\)

    130. \(f(x)=-x^{2}+3 x-4\)

    131.  \(f(x)=x^{2}+4 x+3\)

    132.  \(f(x)=x^{2}+4 x-12\)

    133. \(f(x)=-x^{2}-4 x+2\)

    134. \(f(x)=-x^{2}+4 x-5\)

    135.  \(f(x)=x^{2}+6 x+5\)

    136.  \(f(x)=x^{2}-6 x+8\)

    137. \(f(x)=x^{2}-6 x+15\)

    138. \(f(x)=x^{2}-6 x+6\)

    Answers to Odd Examples:

    125.

    This figure shows a downward-opening parabola graphed on the x y-coordinate plane. The x-axis of the plane runs from negative 10 to 10. The y-axis of the plane runs from negative 15 to 10. The parabola has a vertex at (1, negative 6). The y-intercept, point (0, negative 7), is plotted. The axis of symmetry, x equals 1, is plotted as a dashed vertical line.
    Figure 125

    127.

    Figure 127 

    133.

    This figure shows a downward-opening parabola on the x y-coordinate plane. It has a vertex of (negative 2, 6), y-intercept of (0, 2), and axis of symmetry shown at x equals negative 2.
    Figure 133

    129.

    Figure 129

    135.

    This figure shows an upward-opening parabola graphed on the x y-coordinate plane. The x-axis of the plane runs from negative 10 to 10. The y-axis of the plane runs from negative 10 to 10. The parabola has a vertex at (negative 3, negative 4). The y-intercept, point (0, 5), is plotted as are the x-intercepts, (negative 5, 0) and (negative 1, 0).
    Figure 135 

    131.

    This figure shows an upward-opening parabola graphed on the x y-coordinate plane. The x-axis of the plane runs from negative 10 to 10. The y-axis of the plane runs from negative 10 to 10. The parabola has a vertex at (negative 2, negative 1). The y-intercept, point (0, 3), is plotted as are the x-intercepts, (negative 3, 0) and (negative 1, 0).
    Figure 133 

    137.

    This figure shows an upward-opening parabolas on the x y-coordinate plane. It has a vertex of (3, 6), y-intercept of (0, 10), and axis of symmetry shown at x equals 3.
    Figure 137

    \( \bigstar \) Sketch each quadratic function below

    145. \(f(x)=2 x^{2}-4 x+1\)

    146.  \(f(x)=3 x^{2}-6 x-1\)

    147. \(f(x)=-2 x^{2}+8 x-10\)

    148. \(f(x)=-2 x^{2}-4 x-5\)

    149. \(f(x)=5 x^{2}-10 x+8\)

    150. \(f(x)=3 x^{2}-12 x+7\)

    151.  \(f(x)=3 x^{2}+18 x+20\)

    152. \(f(x)=-3 x^{2}+6 x+1\)

    153. \(f(x)=-4 x^{2}+12 x-9\)

    154.  \(f(x)=-4 x^{2}-6 x-2\)

    155. \(f(x)=-4 x^{2}+4 x-3\)

    156. \(f(x)=-4 x^{2}-4 x+3\)

    157. \(f(x)=-2 x^{2}+6 x-3\)

    158.  \(f(x)=9 x^{2}+12 x+4\)

    159. \(f(x)=2 x^{2}+4 x-3\)

    160. \(f(x)=3 x^{2}+2 x-2\)

    Answers to Odd Examples:

    145.

    This figure shows an upward-opening parabola on the x y-coordinate plane. It has a vertex of (1, negative 1), y-intercept of (0, 1), and axis of symmetry shown at x equals 1.
    Figure 145

    147.

    This figure shows a downward-opening parabola on the x y-coordinate plane. It has a vertex of (2, negative 2), y-intercept of (0, negative 10), and axis of symmetry shown at x equals 2.
    Figure 147 

    149.

    This figure shows an upward-opening parabola on the x y-coordinate plane. It has a vertex of (1, 3), y-intercept of (0, 8), and axis of symmetry shown at x equals 1.
    Figure 149 

    151.

    This figure shows an upward-opening parabola graphed on the x y-coordinate plane. The x-axis of the plane runs from negative 10 to 10. The y-axis of the plane runs from negative 10 to 10. The parabola has a vertex at (negative 3, negative 7). The x-intercepts are plotted at the approximate points (negative 4.5, 0) and (negative 1.5, 0). The axis of symmetry is the vertical line x equals negative 3, plotted as a dashed line.
    Figure 151 

    153.

    Figure 153 

    155.

    Figure 155 

    157.

    Figure 157 

    159.

    Figure 117 

    \( \bigstar \) Sketch each quadratic function below

    165. \(f(x)=(x-1)^{2}\)

    166. \(f(x)=(x+1)^{2}\)

    167. \(f(x)=(x-1)^{2}+5\)

    169. \(f(x)=(x-3)^{2}+4\)

    169. \(f(x)=(x-4)^{2}-9\)

    170. \(f(x)=(x-6)^{2}-2\)

    171. \(f(x)=(x+2)^{2}+1\)

    172. \(f(x)=(x+3)^{2}-1\)

    173. \(f(x)=(x-4)^{2}-3\)

    174. \(f(x)=(x+5)^{2}-2\)

    175. \(f(x)=-2(x-4)^{2}+22\)

    176. \(f(x)=2(x+3)^{2}-13\)

    177. \(f(x)=-2(x+1)^{2}+8\)

    178. \(f(x)=-2(x-5)^{2}-3\)

    179. \(f(x)=-4(x-1)^{2}-2\)

    180. \(f(x)=-3(x+2)^{2}+12\)

    181. \(f(x)=-5(x-1)^{2}\)

    182. \(f(x)=-(x+2)^{2}\)

    Answers to Odd Examples:

    165.

    Figure 165

    167.

    This figure shows an upward-opening parabolas on the x y-coordinate plane. It has a vertex of (1, 5) and other points (negative 1, 9) and (3, 9).
    Figure 167

    169.

    Figure 169 

    171.

    This figure shows an upward-opening parabolas on the x y-coordinate plane. It has a vertex of (negative 2, 1) and other points (negative 4, 5) and (0, 5).
    Figure 171

    173.

    This figure shows an upward-opening parabolas on the x y-coordinate plane. It has a vertex of (4, negative 2) and other points (3, negative 2) and (5, negative 2).
    Figure 173 

    175.

    Figure 175 

    177.

    Figure 177 

    179.

    Figure 179 

    181.

    Figure 181 

    H: Convert to vertex form

    Exercise \(\PageIndex{H}\) 

    \( \bigstar \) Rewrite in Standard (vertex) form \(y=a(x-h)^{2}+k\) and determine the vertex.

    185. \(y=x^{2}-14 x+24\)

    186. \(y=x^{2}-12 x+40\)

    187. \(y=x^{2}+4 x-12\)

    188. \(y=x^{2}+6 x-1\)

    189. \(y=2 x^{2}-12 x-3\)

    190. \(y=3 x^{2}-6 x+5\)

    191. \(y=-x^{2}+16 x+17\)

    192. \(y=-x^{2}+10 x\)

    193. \(f(x)=-x^{2}-4 x+2\)

    194. \(f(x)=x^2−12x+32\)

    195. \(g(x)=x^2+2x−3\)

    196. \(f(x)=x^2−x\)

    197. \(f(x)=x^2+5x−2\)

    198. \(h(x)=2x^2+8x−10\)

    199. \(k(x)=3x^2−6x−9\)

    200. \(f(x)=2x^2−6x\)

    201. \(f(x)=3x^2−5x−1\)

    203. \(f(x)=-3 x^{2}-12 x-5\)

    204. \(f(x)=2 x^{2}-12 x+7\)

    205. \(f(x)=3 x^{2}+6 x-1\)

    206. \(f(x)=-4 x^{2}-16 x-9\)

    207. \(f(x)=5 x^{2}-10 x+8\)

    208.  \(f(x)=3 x^{2}-6 x-1\)

    209. \(f(x)=2 x^{2}-4 x+1\)

    210.  \(f(x)=-16 x^{2}+24 x+6\)

    Answers  to Odd Examples:

    185. \(y=(x-7)^{2}-25\); vertex: \((7, -25)\)

    187. \(y=(x+2)^{2}-16\); vertex: \((-2, -16)\)

    189. \(y=2(x-3)^{2}-21\); vertex: \((3, -21)\)

    191. \(y=-(x-8)^{2}+81\); vertex: \((8, 81)\)

    193. \(f(x)=-(x+2)^{2}+6\); vertex: \((-2,6)\)

    195. \(g(x)=(x+1)^2−4\), Vertex \((−1,−4)\)

    197. \(f(x)=\left(x+\frac{5}{2}\right)^2−\frac{33}{4}\), Vertex \(\left(−\frac{5}{2},−\frac{33}{4}\right)\)

    199. \(k(x)=3(x−1)^2−12\), Vertex \((1,−12)\)

    201. \(f(x)=3\left(x−\frac{5}{6}\right)^2−\frac{37}{12}\), Vertex \(\left(\frac{5}{6},−\frac{37}{12}\right)\)

    203. \(f(x)=-3(x+2)^{2}+7\); vertex: \((-2,7)\)

    205. \(f(x)=3(x+1)^{2}-4\); vertex: \(( -1,-4)\)

    207. \(f(x)=5(x-1)^{2}+3\); vertex: \((1,3)\)

    209. \(f(x)=2(x-1)^{2}-1\); vertex: \(( 1,-1)\)

     

    I: Convert to vertex form

    Exercise \(\PageIndex{I}\) 

    \( \bigstar \) In the following exercises, write the quadratic function in \(f(x)=a(x−h)^{2}+k\) form whose graph is shown.

    211.
    This figure shows an upward-opening parabola on the x y-coordinate plane. It has a vertex of (negative 1, negative 5) and y-intercept (0, negative 4).

    212.
    This figure shows an upward-opening parabola on the x y-coordinate plane. It has a vertex of (2,4) and y-intercept (0, 8).

    213.
    This figure shows an upward-opening parabola on the x y-coordinate plane. It has a vertex of (1, negative 3) and y-intercept (0, negative 1).

    214.
    This figure shows an upward-opening parabola on the x y-coordinate plane. It has a vertex of (negative 1, negative 5) and y-intercept (0, negative 3).

    215. 

    CNX_Precalc_Figure_03_02_207.jpg

    216.

    CNX_Precalc_Figure_03_02_208.jpg

    217.

    CNX_Precalc_Figure_03_02_209.jpg

    218. 

    CNX_Precalc_Figure_03_02_210.jpg 

    219. 

    CNX_Precalc_Figure_03_02_211n.jpg

    220. 

    CNX_Precalc_Figure_03_02_212.jpg

    221.

    This figure shows a downward-opening parabola on the x y-coordinate plane. It has a vertex of (4, 0), y-intercept of (0, negative 16), and axis of symmetry shown at x equals 4.

     
    Answers to Odd Examples

    211. \(f(x)=(x+1)^{2}-5\)

    213. \(f(x)=2(x-1)^{2}-3\)

    215. \(f(x)=x^2−4x+1\)

    217. \(f(x)= -2x^2+8x-1 \)

    219. \(f(x)= \frac{1}{2}x^2-3x+\frac{7}{2} \)

    221. \(f(x)=-(x-4)^{2}+0\)

    J: Construct an equation from points

    Exercise \(\PageIndex{J}\) 

    \( \bigstar \) Use the vertex \((h,k)\) and a point on the graph \((x,y)\) to find the general form of the equation of the quadratic function.

    223) \((h,k)=(2,0), \; (x,y)=(4,4)\)

    224) \((h,k)=(−2,−1), \; (x,y)=(−4,3)\)

    225) \((h,k)=(0,1), \; (x,y)=(2,5)\)

    226) \((h,k)=(2,3), \; (x,y)=(5,12)\)

    227) \((h,k)=(−5,3), \; (x,y)=(2,9)\)

    228) \((h,k)=(3,2), \; (x,y)=(10,1)\)

    229) \((h,k)=(0,1), \; (x,y)=(1,0)\)

    230) \((h,k)=(1,0), \; (x,y)=(0,1)\)

    \( \bigstar \) Write the equation of the quadratic function that contains the given point and has the same shape as the given function.

    231) Contains \((1,1)\) and has shape of \(f(x)=2x^2\). Vertex is on the \(y\)-axis.

    232) Contains \((−1,4)\) and has the shape of \(f(x)=2x^2\). Vertex is on the \(y\)-axis.

    233) Contains \((2,3)\) and has the shape of \(f(x)=3x^2\). Vertex is on the \(y\)-axis.

    234) Contains \((1,−3)\) and has the shape of \(f(x)=−x^2\). Vertex is on the \(y\)-axis.

    235) Contains \((4,3)\) and has the shape of \(f(x)=5x^2\). Vertex is on the \(y\)-axis.

    236) Contains \((1,−6)\) has the shape of \(f(x)=3x^2\). Vertex has \(x\)-coordinate of \(-1\).

    Answers to Odd Examples:

    223. \(f(x)=x^2−4x+4\)

    225. \(f(x)=x^2+1\)

    227. \(f(x)=\frac{6}{49}x^2+\frac{60}{49}x+\frac{297}{49}\)

    229. \(f(x)=−x^2+1\)

    231. \(f(x)=2x^2−1\)

    233. \(f(x)=3x^2−9\)

    235. \(f(x)=5x^2−77\)


    3.1e: Exercises - Quadratic Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?