3.1e: Exercises - Quadratic Functions
- Page ID
- 45444
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A: Concepts
Exercise \(\PageIndex{A}\)
1) Explain the advantage of writing a quadratic function in standard form.
2) How can the vertex of a parabola be used in solving real world problems?
3) Explain why the condition of \(a≠0\) is imposed in the definition of the quadratic function.
4) What is another name for the standard form of a quadratic function?
5) What two algebraic methods can be used to find the horizontal intercepts of a quadratic function?
- Answers to Odd Examples:
-
1. When written in that form, the vertex can be easily identified.
3. If \(a=0\) then the function becomes a linear function.
5. If possible, we can use factoring. Otherwise, we can use the quadratic formula.Add texts here.
B: Parabola Orientation
Exercise \(\PageIndex{B}\)
\( \bigstar \) Determine if the parabola opens up or down.
7. a. \(f(x)=-2 x^{2}-6 x-7\)
8. a. \(f(x)=4 x^{2}+x-4\) |
9. a. \(f(x)=-3 x^{2}+5 x-1\)
10. a. \(f(x)=x^{2}+3 x-4\) |
11. \(y=x^{2}-9 x+20\) |
- Answers to Odd Examples:
-
7. a. down b. up 9. a. down b. up 11. Upward 13. Downward 15. Downward
C: Vertex and Axis of Symmetry
Exercise \(\PageIndex{C}\)
\( \bigstar \) Determine the vertex.
17. \(y=-(x-5)^{2}+3\) 18. \(y=-2(x-1)^{2}+7\) |
19. \(y=5(x+1)^{2}+6\) 20. \(y=3(x+4)^{2}+10\) |
21. \(y=-5(x+8)^{2}-1\) 22. \(y=(x+2)^{2}-5\) |
\( \bigstar \) Find the vertex and the axis of symmetry.
23. \(f(x)=x^{2}+8 x-1\) 24. \(f(x)=x^{2}+10 x+25\) 25. \(f(x)=-x^{2}+2 x+5\) 26. \(f(x)=-2 x^{2}-8 x-3\) |
27. \(y=-x^{2}+10 x-34\) 28. \(y=-x^{2}-6 x+1\) 29. \(y=-4 x^{2}+12 x-7\) 30. \(y=-9 x^{2}+6 x+2\) |
31. \(y=4 x^{2}-1\) 32. \(y=x^{2}-16\) |
- Answers to Odd Examples
-
17. \((5, 3)\)
19. \((−1, 6)\)
21. \((−8, −1)\)
23. Vertex: \((-4,-17)\), Axis of symmetry: \(x=-4\)
25. Vertex: \((1, 6)\), Axis of symmetry: \(x=1\)
27. Vertex: \((5,-9)\); axis of symmetry: \(x=5\)
29. Vertex: \(\left(\frac{3}{2}, 2\right)\); axis of symmetry: \(x=\frac{3}{2}\)
31. Vertex: \((0,-1)\); axis of symmetry: \(x=0\)
D: Domain and Range
Exercise \(\PageIndex{D}\)
\( \bigstar \) Use the vertex of the graph of the quadratic function and the direction the graph opens to find the domain and range of the function.
33) Vertex \((1,−2)\), opens up. |
34) Vertex \((−1,2)\) opens down. |
35) Vertex \((−5,11)\), opens down. |
36) Vertex \((−100,100)\), opens up. |
\( \bigstar \) Given the following quadratic functions, determine the domain and range.
37. \(f(x)=3 x^{2}+30 x+50\) 38. \(f(x)=5 x^{2}-10 x+1\) 39. \(g(x)=-2 x^{2}+4 x+1\) |
40. \(g(x)=-7 x^{2}-14 x-9\) 41. \(f(x)=x^{2}+x-1\) 42. \(f(x)=-x^{2}+3 x-2\) |
43) \(f(x)=(x−3)^2+2\) 44) \(f(x)=−2(x+3)^2−6\) 45) \(f(x)=x^2+6x+4\) |
46) \(f(x)=2x^2−4x+2\) 47) \(k(x)=3x^2−6x−9\)
|
- Answers to Odd Examples:
-
33. Domain is \((−∞,∞)\). Range is \([−2,∞)\).
35. Domain is \((−∞,∞)\) Range is \((−∞,11]\).
37. Domain: \((−∞, ∞)\); range:\([−25, ∞)\)
39. Domain: \((−∞, ∞)\); range: \((−∞, 3]\)
41. Domain: \((−∞, ∞)\); range: \([−\frac{5}{4}, ∞)\)
43. Domain is \((−∞,∞)\). Range is \([2,∞)\).
45. Domain is \((−∞,∞)\). Range is \([−5,∞)\).
47. Domain is \((−∞,∞)\). Range is \([−12,∞)\).
E: Minimum or maximum Value
Exercise \(\PageIndex{E}\)
\( \bigstar \) In the following exercises, find the maximum or minimum value of each function.
49. \(f(x)=2 x^{2}+x-1\) 50. \(y=-4 x^{2}+12 x-5\) 51. \(y=x^{2}-6 x+15\) 52. \(y=-x^{2}+4 x-5\) 53. \(y=-9 x^{2}+16\) 54. \(y=4 x^{2}-49\) |
55. \(y=-x^{2}-6 x+1\) 56. \(y=-x^{2}-4 x+8\) 57. \(y=25 x^{2}-10 x+5\) 58. \(y=16 x^{2}-24 x+7\) 59. \(y=-x^{2}\) 60. \(y=1-9 x^{2}\) |
61. . \(y=20 x-10 x^{2}\) 62. \(y=12 x+4 x^{2}\) 63. \(y=3 x^{2}-4 x-2\) 64. \(y=6 x^{2}-8 x+5\) 65. \(y=x^{2}-5 x+1\) 66. \(y=1-x-x^{2}\) |
\( \bigstar \) Determine whether there is a minimum or maximum value to each quadratic function. Find the value and the axis of symmetry.
68. \(y(x)=2x^2+10x+12\) 69. \(f(x)=2x^2−10x+4\) 70. \(f(x)=−x^2+4x+3\) |
71. \(f(x)=4x^2+x−1\) 72. \(h(t)=−4t^2+6t−1\) |
73) \(f(x)=\dfrac{1}{2}x^2+3x+1\) 74) \(f(x)=−\dfrac{1}{3}x^2−2x+3\) |
- Answers to Odd Examples:
-
49. The minimum value is \(−\frac{9}{8}\) when \(x=−\frac{1}{4}\).
51. The minimum value is \(6\) when \(x=3\).
53. The maximum value is \(16\) when \(x=0\).
55. Maximum: \(y = 10\)
57. Minimum: \(y = 4\) when \( x = \frac{1}{5}\)
59. Maximum: \(y = 0\)
61. Maximum: \(y = 10\)
63. Minimum: \(y = −\frac{10}{3}\)
65. Minimum: \(y = −\frac{21}{4}\)
69. Minimum is \(−\frac{17}{2}\) and occurs at \(\frac{5}{2}\).
Axis of symmetry is \(x=\frac{5}{2}\).71. Minimum is \(−\frac{17}{16}\) and occurs at \(−\tfrac{1}{8}\).
\( \qquad \) Axis of symmetry is \(x=−\frac{1}{8}\).73. Minimum is \(−\frac{7}{2}\) and occurs at \(−3\).
\( \qquad \) Axis of symmetry is \(x=−3\).
F: Intercepts
Exercise \(\PageIndex{F}\)
\( \bigstar \) Determine the \(x\)- and \(y\)-intercepts of each function.
75. \(f(x)=x^{2}+7 x+6\) 76. \(f(x)=x^{2}+10 x-11\) 77. \(f(x)=x^{2}+8 x+12\) 78. \(f(x)=x^{2}+5 x+6\) 79. \(f(x)=-x^{2}+8 x-19\) 80. \(f(x)=-3 x^{2}+x-1\) 81. \(f(x)=x^{2}+6 x+13\) 82. \(f(x)=x^{2}+8 x+12\) |
83. \(f(x)=4 x^{2}-20 x+25\) 84. \(f(x)=-x^{2}-14 x-49\) 85. \(f(x)=-x^{2}-6 x-9\) 86. \(f(x)=4 x^{2}+4 x+1\) 87. \(y=x^{2}+4 x-12\) 88. \(y=x^{2}-13 x+12\) 89. \(y=2 x^{2}+5 x-3\) 90. \(y=3 x^{2}-4 x-4\) |
91. \(y=-5 x^{2}-3 x+2\) 92. \(y=-6 x^{2}+11 x-4\) 93. \(y=4 x^{2}-27\) 94. \(y=9 x^{2}-50\) 95. \(y=x^{2}-x+1\) 96. \(y=x^{2}-6 x+4\) 97) \(g(x) = x(x−4)-20\) 98) \(g(x) = x(x−2)-10\) |
- Answers to Odd Examples:
-
75. \(y\)-intercept: \((0,6)\); \(x\)-intercept(s): \((-1,0), (-6,0)\)
77. \(y\)-intercept: \((0,12)\); \(x\)-intercept(s): \((-2,0), (-6,0)\)
79. \(y\)-intercept: \((0,-19)\); \(x\)-intercept(s): none
81. \(y\)-intercept: \((0,13)\); \(x\)-intercept(s): none
83. \(y\)-intercept: \((0, 25)\); \(x\)-intercept(s): \((\frac{5}{2},0)\)
85. \(y\)-intercept: \((0,9)\); \(x\)-intercept(s): \((-3,0)\)
87. \(x\)-intercepts: \((-6,0),(2,0)\); \(y\)-intercept: \((0,-12)\)
89. \(x\)-intercepts: \((-3,0),\left(\frac{1}{2}, 0\right)\); \(y\)-intercept: \((0,-3)\)
91. \(x\)-intercepts: \((-1,0),\left(\frac{2}{5}, 0\right)\); \(y\)-intercept: \((0,2)\)
93. \(x\)-intercepts: \(\left(-\frac{3 \sqrt{3}}{2}, 0\right),\left(\frac{3 \sqrt{3}}{2}, 0\right)\); \(y\)-intercept: \((0,-27)\)
95. \(x\)-intercepts: none; \(y\)-intercept: \((0,1)\)
97. \(x\)-intercepts: \({2+2 \sqrt{6}, 2−2\sqrt{6}}\); \(y\)-intercept: \((0,-20)\)
G: Graph Quadratic Functions
Exercise \(\PageIndex{G}\)
\( \bigstar \) Sketch a graph of the quadratic function and give the vertex, axis of symmetry, and intercepts.
99) \(f(x)=x^2−2x\) 100) \(f(x)=x^2−6x−1\) |
101) \(f(x)=x^2−5x−6\) 102) \(f(x)=x^2−7x+3\) |
103) \(f(x)=−2x^2+5x−8\)
|
105) \(f(x)=4x^2−12x−3\)
|
\( \bigstar \) Sketch each quadratic function below
107. \(f(x)=x^{2}-10 x\) 108. \(f(x)=x^{2}+8 x\) 109. \(f(x)=x^{2}-9\) 110. \(f(x)=x^{2}-25\) |
111. \(f(x)=1-x^{2}\) 112. \(f(x)=4-x^{2}\) 113. \(f(x)=x^{2}-2\) 114. \(f(x)=x^{2}-3\) |
115. \(f(x)=-2 x^{2}+3\) 116. \(f(x)=-2 x^{2}-1\) 117. \(f(x)=x^{2}-1\) 118. \(f(x)=x^{2}+1\) |
121. n/a 122. \(f(x)=\tfrac{1}{3} x^{2}-3\) 123. n/a 124. \(f(x)=5 x^{2}+2\) |
- Answers to Odd Examples:
-
99.
Vertex \((1, −1)\),
Axis of symmetry is \(x=1\).
Intercepts: \((0,0), \; (2,0)\)101.
Vertex \(\left(\tfrac{5}{2},\tfrac{−49}{4}\right)\),
Axis of symmetry is \(x=\tfrac{5}{2}\).
Intercepts: \((0,−6), \; (−1,0), \; (6,0)\)103.
Vertex \(\left(\tfrac{5}{4}, −\tfrac{39}{8}\right)\),
Axis of symmetry is \(x=\tfrac{5}{4}\).
Intercepts: \((0, −8)\)105.
Vertex \(\left(\tfrac{3}{2}, −12 \right),\)
Axis of symmetry is \(x=\frac{3}{2},\)
Intercepts: \( \left( \tfrac{3}{2} \pm \sqrt{3} , 0 \right), \) \((0, -3)\)107.
109.
111.
113.
115.
117.
\( \bigstar \) Sketch each quadratic function below
125. \(f(x)=-x^{2}+2 x-7\) 126. \(f(x)=-x^{2}+2 x-4\) 127. \(f(x)=x^{2}-2 x-8\) 128. \(f(x)=-x^{2}-2 x+15\) |
129. \(f(x)=x^{2}+3 x+4\) 130. \(f(x)=-x^{2}+3 x-4\) 131. \(f(x)=x^{2}+4 x+3\) 132. \(f(x)=x^{2}+4 x-12\) |
133. \(f(x)=-x^{2}-4 x+2\) 134. \(f(x)=-x^{2}+4 x-5\) 135. \(f(x)=x^{2}+6 x+5\) 136. \(f(x)=x^{2}-6 x+8\) |
137. \(f(x)=x^{2}-6 x+15\) 138. \(f(x)=x^{2}-6 x+6\) |
- Answers to Odd Examples:
-
125.
127.
133.
129.
135.
131.
137.
\( \bigstar \) Sketch each quadratic function below
145. \(f(x)=2 x^{2}-4 x+1\) 146. \(f(x)=3 x^{2}-6 x-1\) 147. \(f(x)=-2 x^{2}+8 x-10\) 148. \(f(x)=-2 x^{2}-4 x-5\) 149. \(f(x)=5 x^{2}-10 x+8\) 150. \(f(x)=3 x^{2}-12 x+7\) |
151. \(f(x)=3 x^{2}+18 x+20\) 152. \(f(x)=-3 x^{2}+6 x+1\) 153. \(f(x)=-4 x^{2}+12 x-9\) 154. \(f(x)=-4 x^{2}-6 x-2\) 155. \(f(x)=-4 x^{2}+4 x-3\) 156. \(f(x)=-4 x^{2}-4 x+3\) |
157. \(f(x)=-2 x^{2}+6 x-3\) 158. \(f(x)=9 x^{2}+12 x+4\) 159. \(f(x)=2 x^{2}+4 x-3\) 160. \(f(x)=3 x^{2}+2 x-2\) |
- Answers to Odd Examples:
-
145.
147.
149.
151.
153.
155.
157.
159.
\( \bigstar \) Sketch each quadratic function below
165. \(f(x)=(x-1)^{2}\) 166. \(f(x)=(x+1)^{2}\) 167. \(f(x)=(x-1)^{2}+5\) 169. \(f(x)=(x-3)^{2}+4\) 169. \(f(x)=(x-4)^{2}-9\) 170. \(f(x)=(x-6)^{2}-2\) |
171. \(f(x)=(x+2)^{2}+1\) 172. \(f(x)=(x+3)^{2}-1\) 173. \(f(x)=(x-4)^{2}-3\) 174. \(f(x)=(x+5)^{2}-2\) 175. \(f(x)=-2(x-4)^{2}+22\) 176. \(f(x)=2(x+3)^{2}-13\) |
177. \(f(x)=-2(x+1)^{2}+8\) 178. \(f(x)=-2(x-5)^{2}-3\) 179. \(f(x)=-4(x-1)^{2}-2\) 180. \(f(x)=-3(x+2)^{2}+12\) 181. \(f(x)=-5(x-1)^{2}\) 182. \(f(x)=-(x+2)^{2}\) |
- Answers to Odd Examples:
-
165.
167.
169.
171.
173.
175.
177.
179.
181.
H: Convert to vertex form
Exercise \(\PageIndex{H}\)
\( \bigstar \) Rewrite in Standard (vertex) form \(y=a(x-h)^{2}+k\) and determine the vertex.
185. \(y=x^{2}-14 x+24\) 186. \(y=x^{2}-12 x+40\) 187. \(y=x^{2}+4 x-12\) 188. \(y=x^{2}+6 x-1\) 189. \(y=2 x^{2}-12 x-3\) 190. \(y=3 x^{2}-6 x+5\) 191. \(y=-x^{2}+16 x+17\) 192. \(y=-x^{2}+10 x\) |
193. \(f(x)=-x^{2}-4 x+2\) 194. \(f(x)=x^2−12x+32\) 195. \(g(x)=x^2+2x−3\) 196. \(f(x)=x^2−x\) 197. \(f(x)=x^2+5x−2\) 198. \(h(x)=2x^2+8x−10\) 199. \(k(x)=3x^2−6x−9\) 200. \(f(x)=2x^2−6x\) |
201. \(f(x)=3x^2−5x−1\) 203. \(f(x)=-3 x^{2}-12 x-5\) 204. \(f(x)=2 x^{2}-12 x+7\) 205. \(f(x)=3 x^{2}+6 x-1\) 206. \(f(x)=-4 x^{2}-16 x-9\) 207. \(f(x)=5 x^{2}-10 x+8\) 208. \(f(x)=3 x^{2}-6 x-1\) 209. \(f(x)=2 x^{2}-4 x+1\) 210. \(f(x)=-16 x^{2}+24 x+6\) |
- Answers to Odd Examples:
-
185. \(y=(x-7)^{2}-25\); vertex: \((7, -25)\)
187. \(y=(x+2)^{2}-16\); vertex: \((-2, -16)\)
189. \(y=2(x-3)^{2}-21\); vertex: \((3, -21)\)
191. \(y=-(x-8)^{2}+81\); vertex: \((8, 81)\)
193. \(f(x)=-(x+2)^{2}+6\); vertex: \((-2,6)\)
195. \(g(x)=(x+1)^2−4\), Vertex \((−1,−4)\)
197. \(f(x)=\left(x+\frac{5}{2}\right)^2−\frac{33}{4}\), Vertex \(\left(−\frac{5}{2},−\frac{33}{4}\right)\)
199. \(k(x)=3(x−1)^2−12\), Vertex \((1,−12)\)
201. \(f(x)=3\left(x−\frac{5}{6}\right)^2−\frac{37}{12}\), Vertex \(\left(\frac{5}{6},−\frac{37}{12}\right)\)
203. \(f(x)=-3(x+2)^{2}+7\); vertex: \((-2,7)\)
205. \(f(x)=3(x+1)^{2}-4\); vertex: \(( -1,-4)\)
207. \(f(x)=5(x-1)^{2}+3\); vertex: \((1,3)\)
209. \(f(x)=2(x-1)^{2}-1\); vertex: \(( 1,-1)\)
I: Convert to vertex form
Exercise \(\PageIndex{I}\)
\( \bigstar \) In the following exercises, write the quadratic function in \(f(x)=a(x−h)^{2}+k\) form whose graph is shown.
211. |
212. |
213. |
214. |
215. |
216. |
217. |
218.
|
219. |
220. |
221. |
- Answers to Odd Examples:
-
211. \(f(x)=(x+1)^{2}-5\)
213. \(f(x)=2(x-1)^{2}-3\)
215. \(f(x)=x^2−4x+1\)
217. \(f(x)= -2x^2+8x-1 \)
219. \(f(x)= \frac{1}{2}x^2-3x+\frac{7}{2} \)
221. \(f(x)=-(x-4)^{2}+0\)
J: Construct an equation from points
Exercise \(\PageIndex{J}\)
\( \bigstar \) Use the vertex \((h,k)\) and a point on the graph \((x,y)\) to find the general form of the equation of the quadratic function.
223) \((h,k)=(2,0), \; (x,y)=(4,4)\) 224) \((h,k)=(−2,−1), \; (x,y)=(−4,3)\) 225) \((h,k)=(0,1), \; (x,y)=(2,5)\) 226) \((h,k)=(2,3), \; (x,y)=(5,12)\) |
227) \((h,k)=(−5,3), \; (x,y)=(2,9)\) 228) \((h,k)=(3,2), \; (x,y)=(10,1)\) 229) \((h,k)=(0,1), \; (x,y)=(1,0)\) 230) \((h,k)=(1,0), \; (x,y)=(0,1)\) |
\( \bigstar \) Write the equation of the quadratic function that contains the given point and has the same shape as the given function.
231) Contains \((1,1)\) and has shape of \(f(x)=2x^2\). Vertex is on the \(y\)-axis.
232) Contains \((−1,4)\) and has the shape of \(f(x)=2x^2\). Vertex is on the \(y\)-axis.
233) Contains \((2,3)\) and has the shape of \(f(x)=3x^2\). Vertex is on the \(y\)-axis.
234) Contains \((1,−3)\) and has the shape of \(f(x)=−x^2\). Vertex is on the \(y\)-axis.
235) Contains \((4,3)\) and has the shape of \(f(x)=5x^2\). Vertex is on the \(y\)-axis.
236) Contains \((1,−6)\) has the shape of \(f(x)=3x^2\). Vertex has \(x\)-coordinate of \(-1\).
- Answers to Odd Examples:
-
223. \(f(x)=x^2−4x+4\)
225. \(f(x)=x^2+1\)
227. \(f(x)=\frac{6}{49}x^2+\frac{60}{49}x+\frac{297}{49}\)
229. \(f(x)=−x^2+1\)
231. \(f(x)=2x^2−1\)
233. \(f(x)=3x^2−9\)
235. \(f(x)=5x^2−77\)