3.8: Derivatives of Inverse Functions
( \newcommand{\kernel}{\mathrm{null}\,}\)
- Find arcsin(12).
- Find arctan(−1).
- Find sec−1(−2).
- Find cot−1(0).
- Find cos−1(cos(π4)).
- Find arcsin(sin(2π3)).
- Find sec−1(sec(−π6)).
- Show that ddxarcsinx=1√1−x2.
- Show that ddxcos−1x=−1√1−x2.
- Show that ddxarctanx=11+x2.
- Show that ddxcot−1x=−11+x2.
- Show that ddxarcsecx=1|x|√x2−1.
- Show that ddxcsc−1x=−1|x|√x2−1.
- Given y=arcsin(x2), find dydx.
- Given y=cos−1(sin(x3)), find dydx.
- Given y=sec−1(1x), find dydx.
- Given y=arccos(ex)⋅arcsin(ex), find dydx.
- Given y=ln((sin−1x)2), find dydx.
- Given y=tan−1√9−x2, find dydx.