Skip to main content
Mathematics LibreTexts

3.8: Derivatives of Inverse Functions

  • Page ID
    144212
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Find \(\arcsin\left(\dfrac{1}{2}\right)\).
       
    2. Find \(\arctan(-1)\).
       
    3. Find \(\sec^{-1}(-2)\).
       
    4. Find \(\cot^{-1}(0)\).
       
    5. Find \(\cos^{-1}\left(\cos\left(\dfrac{\pi}{4}\right)\right)\).
       
    6. Find \(\arcsin\left(\sin\left(\dfrac{2\pi}{3}\right)\right)\).
       
    7. Find \(\sec^{-1}\left(\sec\left(-\dfrac{\pi}{6}\right)\right)\).
       
    8. Show that \(\dfrac{d}{dx}\arcsin x = \dfrac{1}{\sqrt{1 - x^2}}\).
       
    9. Show that \(\dfrac{d}{dx}\cos^{-1} x = \dfrac{-1}{\sqrt{1 - x^2}}\).
       
    10. Show that \(\dfrac{d}{dx}\arctan x = \dfrac{1}{1 + x^2}\).
       
    11. Show that \(\dfrac{d}{dx}\cot^{-1} x = \dfrac{-1}{1 + x^2}\).
       
    12. Show that \(\dfrac{d}{dx}\text{arcsec} x = \dfrac{1}{|x|\sqrt{x^2 - 1}}\).
       
    13. Show that \(\dfrac{d}{dx}\csc^{-1} x = \dfrac{-1}{|x|\sqrt{x^2 - 1}}\).
       
    14. Given \(y = \arcsin(x^2)\), find \(\dfrac{dy}{dx}\).
       
    15. Given \(y = \cos^{-1}\Bigl(\sin (x^3)\Bigr)\), find \(\dfrac{dy}{dx}\).
       
    16. Given \(y = \sec^{-1}\left(\dfrac{1}{x}\right)\), find \(\dfrac{dy}{dx}\).
       
    17. Given \(y = \arccos(e^x) \cdot \arcsin(e^x)\), find \(\dfrac{dy}{dx}\).
       
    18. Given \(y = \ln \Bigl((\sin^{-1} x)^2\Bigr)\), find \(\dfrac{dy}{dx}\).
       
    19. Given \(y = \tan^{-1} \sqrt{9 - x^2}\), find \(\dfrac{dy}{dx}\).

    3.8: Derivatives of Inverse Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?