6.E: Factoring (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
6.1: The Greatest Common Factor
In Exercises 1-6, list all positive divisors of the given number, in order, from smallest to largest.
1) 42
- Answer
-
{1,2,3,6,7,14,21,42}
2) 60
3) 44
- Answer
-
{1,2,4,11,22,44}
4) 85
5) 51
- Answer
-
{1,3,17,51}
6) 63
In Exercises 7-12, list all common positive divisors of the given numbers, in order, from smallest to largest.
7) 36 and 42
- Answer
-
{1,2,3,6}
8) 54 and 30
9) 78 and 54
- Answer
-
{1,2,3,6}
10) 96 and 78
11) 8 and 76
- Answer
-
{1,2,4}
12) 99 and 27
In Exercises 13-18, state the greatest common divisor of the given numbers.
13) 76 and 8
- Answer
-
4
14) 84 and 60
15) 32 and 36
- Answer
-
4
16) 64 and 76
17) 24 and 28
- Answer
-
4
18) 63 and 27
In Exercises 19-24, use prime factorization to help calculate the greatest common divisor of the given numbers.
19) 600 and 1080
- Answer
-
120
20) 150 and 120
21) 1800 and 2250
- Answer
-
450
22) 540 and 150
23) 600 and 450
- Answer
-
150
24) 4500 and 1800
In Exercises 25-36, find the greatest common factor of the given expressions.
25) 16b4 and 56b9
- Answer
-
8b4
26) 28s2 and 36s4
27) 35z2 and 49z7
- Answer
-
7z2
28) 24w3 and 30w8
29) 56x3y4 and 16x2y5
- Answer
-
8x2y4
30) 35b5c3 and 63b4c4
31) 24s4t5 and 16s3t6
- Answer
-
8s3t5
32) 10v4w3 and 8v3w4
33) 18y7, 45y6, and 27y5
- Answer
-
9y5
34) 8r7, 24r6, and 12r5
35) 9a6, 6a5, and 15a4
- Answer
-
3a4
36) 15a5, 24a4, and 24a3
In Exercises 37-52, factor out the GCF from each of the given expressions.
37) 25a2+10a+20
- Answer
-
5(5a2+2a+4)
38) 40c2+15c+40
39) 35s2+25s+45
- Answer
-
5(7s2+5s+9)
40) 45b2+20b+35
41) 16c3+32c2+36c
- Answer
-
4c(4c2+8c+9)
42) 12b3+12b2+18b
43) 42s3+24s2+18s
- Answer
-
6s(7s2+4s+3)
44) 36y3+81y2+36y
45) 35s7+49s6+63s5
- Answer
-
7s5(5s2+7s+9)
46) 35s7+56s6+56s5
47) 14b7+35b6+56b5
- Answer
-
7b5(2b2+5b+8)
48) 45x5+81x4+45x3
49) 54y5z3+30y4z4+36y3z5
- Answer
-
6y3z3(9y2+5yz+6z2)
50) 42x4y2+42x3y3+54x2y4
51) 45s4t3+40s3t4+15s2t5
- Answer
-
5.82t3(9s2+8st+3t2)
52) 20v6w3+36v5w4+28v4w5
In Exercises 53-60, factor out the GCF from each of the given expressions.
53) 7w(2w−3)−8(2w−3)
- Answer
-
(7w−8)(2w−3)
54) 5s(8s−1)+4(8s−1)
55) 9r(5r−1)+8(5r−1)
- Answer
-
(9r+8)(5r−1)
56) 5c(4c−7)+2(4c−7)
57) 48a(2a+5)−42(2a+5)
- Answer
-
6(2a+5)(8a−7)
58) 40v(7v−4)+72(7v−4)
59) 56a(2a−1)−21(2a−1)
- Answer
-
7(2a−1)(8a−3)
60) 48r(5r+3)−40(5r+3)
In Exercises 61-68, factor by grouping. Do not simplify the expression before factoring.
61) x2+2x−9x−18
- Answer
-
(x−9)(x+2)
62) x2+6x−9x−54
63) x2+3x+6x+18
- Answer
-
(x+6)(x+3)
64) x2+8x+7x+56
65) x2−6x−3x+18
- Answer
-
(x−3)(x−6)
66) x2−3x−9x+27
67) x2−9x+3x−27
- Answer
-
(x+3)(x−9)
68) x2−2x+7x−14
In Exercises 69-76, factor by grouping. Do not simplify the expression before factoring.
69) 8x2+3x−56x−21
- Answer
-
(x−7)(8x+3)
70) 4x2+9x−32x−72
71) 9x2+36x−5x−20
- Answer
-
(9x−5)(x+4)
72) 7x2+14x−8x−16
73) 6x2−7x−48x+56
- Answer
-
(x−8)(6x−7)
74) 8x2−7x−72x+63
75) 2x2+12x+7x+42
- Answer
-
(2x+7)(x+6)
76) 7x2+28x+9x+36
6.2: Solving Nonlinear Equations
In Exercises 1-8, solve the given equation for x.
1) (9x+2)(8x+3)=0
- Answer
-
x=−29,−38
2) (2x−5)(7x−4)=0
3) x(4x+7)(9x−8)=0
- Answer
-
x=0,−74,89
4) x(9x−8)(3x+1)=0
5) −9x(9x+4)=0
- Answer
-
x=0,−49
6) 4x(3x−6)=0
7) (x+1)(x+6)=0
- Answer
-
x=−1,−6
8) (x−4)(x−1)=0
In Exercises 9-18, given that you are solving for x, state whether the given equation is linear or nonlinear. Do not solve the equation.
9) x2+7x=9x+63
- Answer
-
Nonlinear
10) x2+9x=4x+36
11) 6x−2=5x−8
- Answer
-
Linear
12) −5x+5=−6x−7
13) 7x2=−2x
- Answer
-
Nonlinear
14) 4x2=−7x
15) 3x2+8x=−9
- Answer
-
Nonlinear
16) 5x2−2x=−9
17) −3x+6=−9
- Answer
-
Linear
18) 8x−5=3
In Exercises 19-34, solve each of the given equations for x.
19) 3x+8=9
- Answer
-
13
20) 3x+4=2
21) 9x2=−x
- Answer
-
x=0,−19
22) 6x2=7x
23) 3x+9=8x+7
- Answer
-
25
24) 8x+5=6x+4
25) 8x2=−2x
- Answer
-
x=0,−14
26) 8x2=18x
27) 9x+2=7
- Answer
-
59
28) 3x+2=6
29) 9x2=6x
- Answer
-
x=0,23
30) 6x2=−14x
31) 7x2=−4x
- Answer
-
x=0,−47
32) 7x2=−9x
33) 7x+2=4x+7
- Answer
-
53
34) 4x+3=2x+8
In Exercises 35-50, factor by grouping to solve each of the given equations for x.
35) 63x2+56x+54x+48=0
- Answer
-
x=−67,−89
36) 27x2+36x+6x+8=0
37) 16x2−18x+40x−45=0
- Answer
-
x=−52,98
38) 42x2−35x+54x−45=0
39) 45x2+18x+20x+8=0
- Answer
-
x=−49,−25
40) 18x2+21x+30x+35=0
41) x2+10x+4x+40=0
- Answer
-
x=−4,−10
42) x2+11x+10x+110=0
43) x2+6x−11x−66=0
- Answer
-
x=11,−6
44) x2+6x−2x−12=0
45) 15x2−24x+35x−56=0
- Answer
-
x=−73,85
46) 12x2−10x+54x−45=0
47) x2+2x+9x+18=0
- Answer
-
x=−9,−2
48) x2+8x+4x+32=0
49) x2+4x−8x−32=0
- Answer
-
x=8,−4
50) x2+8x−5x−40=0
In Exercises 51-54, perform each of the following tasks:
- Use a strictly algebraic technique to solve the given equation.
- Use the 5:intersect utility on your graphing calculator to solve the given equation.
Report the results found using graphing calculator as shown in Example 6.2.7.
51) x2=−4x
- Answer
-
x=−4,0
52) x2=6x
53) x2=5x
- Answer
-
x=0,5
54) x2=−6x
In Exercises 55-58, perform each of the following tasks:
- Use a strictly algebraic technique to solve the given equation.
- Use the 2:zero utility on your graphing calculator to solve the given equation.
Report the results found using graphing calculator as shown in Example 6.2.8.
55) x2+7x=0
- Answer
-
x=−7,0
56) x2−8x=0
57) x2−3x=0
- Answer
-
x=0,3
58) x2+2x=0
6.3: Factoring ax² + bx + c when a =1
In Exercises 1-6, compare the given trinomial with ax2+bx+c, then list ALL integer pairs whose product equals ac. Circle the pair whose sum equals b, then use this pair to help factor the given trinomial.
1) x2+7x−18
- Answer
-
(x−2)(x+9)
2) x2+18x+80
3) x2−10x+9
- Answer
-
(x−1)(x−9)
4) x2+12x+27
5) x2+14x+45
- Answer
-
(x+5)(x+9)
6) x2+9x+20
In Exercises 7-12, compare the given trinomial with ax2+bx+c, then begin listing integer pairs whose product equals ac. Cease the list process when you discover a pair whose sum equals b, then circle and use this pair to help factor the given trinomial.
7) x2−16x+39
- Answer
-
(x−3)(x−13)
8) x2−16x+48
9) x2−26x+69
- Answer
-
(x−3)(x−23)
10) x2−22x+57
11) x2−25x+84
- Answer
-
(x−4)(x−21)
12) x2+13x−30
In Exercises 13-18, compare the given trinomial with ax2+bx+c, then compute ac. Try to mentally discover the integer pair whose product is ac and whose sum is b. Factor the trinomial by “dropping this pair in place.”
Note: If you find you cannot identify the pair mentally, begin listing integer pairs whose product equals ac, then cease the listing process when you encounter the pair whose sum equals b.
13) x2−13x+36
- Answer
-
(x−4)(x−9)
14) x2+x−12
15) x2+10x+21
- Answer
-
(x+3)(x+7)
16) x2−17x+66
17) x2−4x−5
- Answer
-
(x+1)(x−5)
18) x2−20x+99
In Exercises 19-24, use an algebraic technique to solve the given equation.
19) x2=−7x+30
- Answer
-
x=3,−10
20) x2=−2x+35
21) x2=−11x−10
- Answer
-
x=−1,−10
22) x2=x+72
23) x2=−15x−50
- Answer
-
x=−5,−10
24) x2=−7x−6
In Exercises 25-30, use an algebraic technique to solve the given equation.
25) 60=x2+11x
- Answer
-
x=4,−15
26) −92=x2−27x
27) −11=x2−12x
- Answer
-
x=1,11
28) 80=x2−16x
29) 56=x2+10x
- Answer
-
x=4,−14
30) 66=x2+19x
In Exercises 31-36, use an algebraic technique to solve the given equation.
31) x2+20=−12x
- Answer
-
x=−2,−10
32) x2−12=11x
33) x2−36=9x
- Answer
-
x=−3,12
34) x2+6=5x
35) x2+8=−6x
- Answer
-
x=−2,−4
36) x2+77=18x
In Exercises 37-40, perform each of the following tasks:
- Use a strictly algebraic technique to solve the given equation.
- Use the 5:intersect utility on your graphing calculator to solve the given equation.
Report the results found using graphing calculator as shown in Example 6.3.6.
37) x2=x+12
- Answer
-
x=−3,4
38) x2=20−x
39) x2+12=8x
- Answer
-
x=2,6
40) x2+7=8x
In Exercises 41-44, perform each of the following tasks:
- Use a strictly algebraic technique to solve the given equation.
- Use the 2:zero utility on your graphing calculator to solve the given equation.
Report the results found using graphing calculator as shown in Example 6.3.7.
41) x2−6x−16=0
- Answer
-
x=8,−2
42) x2+7x−18=0
43) x2+10x−24=0
- Answer
-
x=−12,2
44) x2−9x−36=0
6.4: Factoring ax² + bx + c when a≠1
In Exercises 1-6, compare the given trinomial with ax2+bx+c, then list ALL integer pairs whose product equals ac. Circle the pair whose sum equals b, then use this pair to help factor the given trinomial.
1) 6x2+13x−5
- Answer
-
(2x+5)(3x−1)
2) 3x2−19x+20
3) 4x2−x−3
- Answer
-
(x−1)(4x+3)
4) 6x2−23x+7
5) 3x2+19x+28
- Answer
-
(x+4)(3x+7)
6) 2x2−9x−18
In Exercises 7-12, compare the given trinomial with ax2+bx+c, then begin listing integer pairs whose product equals ac. Cease the list process when you discover a pair whose sum equals b, then circle and use this pair to help factor the given trinomial.
7) 12x2−23x+5
- Answer
-
(3x−5)(4x−1)
8) 8x2+22x+9
9) 6x2+17x+7
- Answer
-
(2x+1)(3x+7)
10) 4x2+19x+21
11) 3x2+4x−32
- Answer
-
(x+4)(3x−8)
12) 4x2+x−14
In Exercises 13-18, compare the given trinomial with ax2+bx+c, then compute ac. Try to mentally discover the integer pair whose product is ac and whose sum is b. Use this pair to help factor the given trinomial.
Note: If you find you cannot identify the pair mentally, begin listing integer pairs whose product equals ac, then cease the listing process when you encounter the pair whose sum equals b.
13) 3x2+28x+9
- Answer
-
(3x+1)(x+9)
14) 6x2+x−1
15) 4x2−21x+5
- Answer
-
(x−5)(4x−1)
16) 4x2−x−14
17) 6x2−11x−7
- Answer
-
(3x−7)(2x+1)
18) 2x2−17x+21
In Exercises 19-26, factor the trinomial.
19) 16x5−36x4+14x3
- Answer
-
2x3(2x−1)(4x−7)
20) 12x4−20x3+8x2
21) 36x4−75x3+21x2
- Answer
-
3x2(3x−1)(4x−7)
22) 6x4−10x3−24x2
23) 6x4−33x3+42x2
- Answer
-
3x2(x−2)(2x−7)
24) 15x3−10x2−105x
25) 16x4−36x3−36x2
- Answer
-
4x2(x−3)(4x+3)
26) 40x4−10x3−5x2
In Exercises 27-38, use an algebraic technique to solve the given equation.
27) (10−8)2−(7−5)3
- Answer
-
x=2,−94
28) 2x2=7x−3
29) 3x2+16=−14x
- Answer
-
x=−2,−83
30) 2x2−20=−3x
31) 3x2+30=23x
- Answer
-
x=6,53
32) 6x2−7=−11x
33) −7x−3=−6x2
- Answer
-
x=−13,32
34) 13x−45=−2x2
35) 26x−9=−3x2
- Answer
-
x=−9,13
36) −23x+7=−6x2
37) 6x2=−25x+9
- Answer
-
x=13,−92
38) 2x2=13x+45
In Exercises 39-42, perform each of the following tasks:
- Use a strictly algebraic technique to solve the given equation.
- Use the 2:zero utility on your graphing calculator to solve the given equation.
Report the results found using graphing calculator as shown in Example 6.4.5.
39) 2x2−9x−5=0
- Answer
-
x=−12,5
40) 2x2+x−28=0
41) 4x2−17x−15=0
- Answer
-
x=−34,5
42) 3x2+14x−24=0
In Exercises 43-46, perform each of the following tasks:
- Use a strictly algebraic technique to solve the given equation.
- Use the 2:zero utility on your graphing calculator to solve the given equation.
Report the results found using graphing calculator as shown in Example 6.4.6.
43) 2x3=3x2+20x
- Answer
-
x=0,−52,4
44) 2x3=3x2+35x
45) 10x3+34x2=24x
- Answer
-
x=0,−4,35
46) 6x3+3x2=63x
6.5: Factoring Special Forms
In Exercises 1-8, expand each of the given expressions.
1) (8r−3t)2
- Answer
-
64r2−48rt+9t2
2) (6a+c)2
3) (4a+7b)2
- Answer
-
16a2+56ab+49b2
4) (4s+t)2
5) (s3−9)2
- Answer
-
s6−18s3+81
6) (w3+7)2
7) (s2+6t2)2
- Answer
-
s4+12s2t2+36t4
8) (7u2−2w2)2
In Exercises 9-28, factor each of the given expressions.
9) 25s2+60st+36t2
- Answer
-
(5s+6t)2
10) 9u2+24uv+16v2
11) 36v2−60vw+25w2
- Answer
-
(6v−5w)2
12) 49b2−42bc+9c2
13) a4+18a2b2+81b4
- Answer
-
(a2+9b2)2
14) 64u4−144u2w2+81w4
15) 49s4−28s2t2+4t4
- Answer
-
(7s2−2t2)2
16) 4a4−12a2c2+9c4
17) 49b6−112b3+64
- Answer
-
(7b3−8)2
18) 25x6−10x3+1
19) 49r6+112r3+64
- Answer
-
(7r3+8)2
20) a6−16a3+64
21) 5s3t−20s2t2+20st3
- Answer
-
5st(s−2t)2
22) 12r3t−12r2t2+3rt3
23) 8a3c+8a2c2+2ac3
- Answer
-
2ac(2a+c)2
24) 18x3z−60x2z2+50xz3
25) −48b3+120b2−75b
- Answer
-
−3b(4b−5)2
26) −45c3+120c2−80c
27) −5u5−30u4−45u3
- Answer
-
−5u3(u+3)2
28) −12z5−36z4−27z3
In Exercises 29-36, expand each of the given expressions.
29) (21c+16)(21c−16)
- Answer
-
441c2−256
30) (19t+7)(19t−7)
31) (5x+19z)(5x−19z)
- Answer
-
25x2−361z2
32) (11u+5w)(11u−5w)
33) (3y4+23z4)(3y4−23z4)
- Answer
-
9y8−529z8
34) (5x3+z3)(5x3−z3)
35) (8r5+19s5)(8r5−19s5)
- Answer
-
64r10−361s10
36) (3u3+16v3)(3u3−16v3)
In Exercises 37-60, factor each of the given expressions.
37) 361x2−529
- Answer
-
(19x+23)(19x−23)
38) 9b2−25
39) 16v2−169
- Answer
-
(4v+13)(4v−13)
40) 81r2−169
41) 169x2−576y2
- Answer
-
(13x+24y)(13x−24y)
42) 100y2−81z2
43) 529r2−289s2
- Answer
-
(23r+17s)(23r−17s)
44) 49a2−144b2
45) 49r6−256t6
- Answer
-
(7r3+16t3)(7r3−16t3)
46) 361x10−484z10
47) 36u10−25w10
- Answer
-
(6u5+5w5)(6u5−5w5)
48) a6−81c6
49) 72y5−242y3
- Answer
-
2y3(6y+11)(6y−11)
50) 75y5−147y3
51) 1444a3b−324ab3
- Answer
-
4ab(19a+9b)(19a−9b)
52) 12b3c−1875bc3
53) 576x3z−1156xz3
- Answer
-
4xz(12x+17z)(12x−17z)
54) 192u3v−507uv3
55) 576t4−4t2
- Answer
-
4t2(12t+1)(12t−1)
56) 4z5−256z3
57) 81x4−256
- Answer
-
(9x2+16)(3x+4)(3x−4)
58) 81x4−1
59) 81x4−16
- Answer
-
(9x2+4)(3x+2)(3x−2)
60) x4−1
In Exercises 61-68, factor each of the given expressions completely.
61) z3+z2−9z−9
- Answer
-
(z+3)(z−3)(z+1)
62) 3u3+u2−48u−16
63) x3−2x2y−xy2+2y3
- Answer
-
(x+y)(x−y)(x−2y)
64) x3+2x2z−4xz2−8z3
65) r3−3r2t−25rt2+75t3
- Answer
-
(r+5t)(r−5t)(r−3t)
66) 2b3−3b2c−50bc2+75c3
67) 2x3+x2−32x−16
- Answer
-
(x+4)(x−4)(2x+1)
68) r3−2r2−r+2
In Exercises 69-80, solve each of the given equations for x.
69) 2x3+7x2=72x+252
- Answer
-
x=−6,6,−72
70) 2x3+7x2=32x+112
71) x3+5x2=64x+320
- Answer
-
x=−8,8,−5
72) x3+4x2=49x+196
73) 144x2+121=264x
- Answer
-
x=1112
74) 361x2+529=874x
75) 16x2=169
- Answer
-
x=−134,134
76) 289x2=4
77) 9x2=25
- Answer
-
x=−53,53
78) 144x2=121
79) 256x2+361=−608x
- Answer
-
x=−1916
80) 16x2+289=−136x
In Exercises 81-84, perform each of the following tasks:
- Use a strictly algebraic technique to solve the given equation.
- Use the 5:intersect utility on your graphing calculator to solve the given equation.
Report the results found using graphing calculator as shown in Example 6.5.12.
81) x3=x
- Answer
-
x=0,−1,1
82) x3=9x
83) 4x3=x
- Answer
-
x=0,−12,12
84) 9x3=x
6.6: Factoring Strategy
In Exercises 1-12, factor each of the given polynomials completely.
1) 484y4z2−144y2z4
- Answer
-
4y2z2(11y+6z)(11y−6z)
2) 72s4t4−242s2t6
3) 3x7z5−363x5z5
- Answer
-
3x5z5(x+11)(x−11)
4) 5r5s2−80r3s2
5) 2u7−162u5
- Answer
-
2u5(u+9)(u−9)
6) 405x4−320x2
7) 3v8−1875v4
- Answer
-
3v4(v2+25)(v+5)(v−5)
8) 3a9−48a5
9) 3x6−300x4
- Answer
-
3x4(x+10)(x−10)
10) 2y5−18y3
11) 1250u7w3−2u3w7
- Answer
-
2u3w3(25u2+w2)(5u+w)(5u−w)
12) 48y8z4−3y4z8
In Exercises 13-24, factor each of the given polynomials completely.
13) 75a6−210a5+147a4
- Answer
-
3a4(5a−7)2
14) 245v7−560v6+320v5
15) 180a5b3+540a4b4+405a3b5
- Answer
-
45a3b3(2a+3b)2
16) 192u6v4+432u5v5+243u4v6
17) 2b5+4b4+2b3
- Answer
-
2b3(b+1)2
18) 3v6+30v5+75v4
19) 2z4−4z3+2z2
- Answer
-
2z2(z−1)2
20) 2u6−40u5+200u4
21) 324x4+360x3+100x2
- Answer
-
4x2(9x+5)2
22) 98b4+84b3+18b2
23) 75b4c5−240b3c6+192b2c7
- Answer
-
3b2c5(5b−8c)2
24) 162a5c4−180a4c5+50a3c6
In Exercises 25-36, factor each of the given polynomials completely.
25) 5a5+5a4−210a3
- Answer
-
5a3(a−6)(a+7)
26) 3y5−9y4−12y3
27) 3y6−39y5+120y4
- Answer
-
3y4(y−8)(y−5)
28) 3y7−27y6+42y5
29) 3z4+12z3−135z2
- Answer
-
3z2(z−5)(z+9)
30) 5a4−40a3−45a2
31) 4a6+64a5+252a4
- Answer
-
4a4(a+9)(a+7)
32) 4x4+64x3+252x2
33) 3z4+33z3+84z2
- Answer
-
3z2(z+7)(z+4)
34) 5a6+65a5+180a4
35) 5z7−75z6+270z5
- Answer
-
5z5(z−6)(z−9)
36) 3y4−27y3+24y2
In Exercises 37-48, factor each of the given polynomials completely.
37) 4b3−22b2+30b
- Answer
-
2b(2b−5)(b−3)
38) 4b6−22b5+30b4
39) 2u4w5−3u3w6−20u2w7
- Answer
-
u2w5(u−4w)(2u+5w)
40) 12x5z2+9x4z3−30x3z4
41) 12x4y5+50x3y6+50x2y7
- Answer
-
2x2y5(3x+5y)(2x+5y)
42) 24s4t3+62s3t4+40s2t5
43) 12x3+9x2−30x
- Answer
-
3x(4x−5)(x+2)
44) 6v4+2v3−20v2
45) 8u6+34u5+30u4
- Answer
-
2u4(4u+5)(u+3)
46) 4a4+29a3+30a2
47) 12a4c4−35a3c5+25a2c6
- Answer
-
a2cA(4a−5c)(3a−5c)
48) 18x6z5−39x5z6+18x4z7
In Exercises 49-56, factor each of the given polynomials completely.
49) 12y5+15y4−108y3−135y2
- Answer
-
3y2(y+3)(y−3)(4y+5)
50) 9b8+12b7−324b6−432b5
51) 9x6z5+6x5z6−144x4z7−96x3z8
- Answer
-
3x3z5(x+4z)(x−4z)(3x+2z)
52) 12u7w3+9u6w4−432u5w5−324u4w6
53) 72z6+108z5−2z4−3z3
- Answer
-
z3(6z+1)(6z−1)(2z+3)
54) 216x7+324x6−6x5−9x4
55) 144a6c3+360a5c4−4a4c5−10a3c6
- Answer
-
2a3c3(6a+c)(6a−c)(2a+5c)
56) 48a8c4+32a7c5−3a6c6−2a5c7
In Exercises 57-60, use your calculator to help factor each of the given trinomials. Follow the procedure outline in Using the Calculator to Assist the ac-Method.
57) 6x2+61x+120
- Answer
-
(2x+15)(3x+8)
58) 16x2−62x−45
59) 60x2−167x+72
- Answer
-
(15x−8)(4x−9)
60) 28x2+x−144
6.7: Applications of Factoring
1) A rectangular canvas picture measures 14 inches by 36 inches. The canvas is mounted inside a frame of uniform width, increasing the total area covered by both canvas and frame to 720 square inches. Find the uniform width of the frame.
- Answer
-
2 inches
2) A rectangular canvas picture measures 10 inches by 32 inches. The canvas is mounted inside a frame of uniform width, increasing the total area covered by both canvas and frame to 504 square inches. Find the uniform width of the frame.
3) A projectile is fired at an angle into the air from atop a cliff overlooking the ocean. The projectile’s distance (in feet) from the base of the cliff is give by the equationx=180tand the projectile’s height above sea level (in feet) is given by the equationy=−16t2+352t+1664where t is the amount of time (in seconds) that has passed since the projectile’s release. How much time passes before the projectile splashes into the ocean? At that time, how far is the projectile from the base of the cliff?
- Answer
-
26 seconds, 4,680 feet
4) A projectile is fired at an angle into the air from atop a cliff overlooking the ocean. The projectile’s distance (in feet) from the base of the cliff is give by the equationx=140tand the projectile’s height above sea level (in feet) is given by the equationy=−16t2+288t+1408where t is the amount of time (in seconds) that has passed since the projectile’s release. How much time passes before the projectile splashes into the ocean? At that time, how far is the projectile from the base of the cliff?
5) The product of two consecutive even integers is 624. Find the integers.
- Answer
-
−26 and −24, and 24 and 26
6) The product of two consecutive even integers is 528. Find the integers.
7) The product of two consecutive positive integers is 552. Find the integers.
- Answer
-
23, 24
8) The product of two consecutive positive integers is 756. Find the integers.
9) The product of two consecutive odd integers is 483. Find the integers.
- Answer
-
−23 and −21, and 21 and 23
10) The product of two consecutive odd integers is 783. Find the integers.
11) A rectangle has perimeter 42 feet and area 104 square feet. Find the dimensions of the rectangle.
- Answer
-
8 feet by 13 feet
12) A rectangle has perimeter 32 feet and area 55 square feet. Find the dimensions of the rectangle.
13) The radius of the outer circle is one inch longer than twice the radius of the inner circle.

If the area of the shaded region is 40π square inches, what is the length of the inner radius?
- Answer
-
3 inches
14) The radius of the outer circle is two inches longer than three times the radius of the inner circle.

If the area of the shaded region is 180π square inches, what is the length of the inner radius?
15) You have two positive numbers. The second number is three more than two times the first number. The difference of their squares is 144. Find both positive numbers.
- Answer
-
5 and 13
16) You have two positive numbers. The second number is two more than three times the first number. The difference of their squares is 60. Find both positive numbers.
17) Two numbers differ by 5. The sum of their squares is 97. Find the two numbers.
- Answer
-
4 and 9, and −4 and −9
18) Two numbers differ by 6. The sum of their squares is 146. Find the two numbers.
19) The length of a rectangle is three feet longer than six times its width. If the area of the rectangle is 165 square feet, what is the width of the rectangle?
- Answer
-
5 feet
20) The length of a rectangle is three feet longer than nine times its width. If the area of the rectangle is 90 square feet, what is the width of the rectangle?
21) The ratio of the width to the length of a given rectangle is 2 to 3, or 23. If the width and length are both increased by 4 inches, the area of the resulting rectangle is 80 square inches. Find the width and length of the original rectangle.
- Answer
-
4 inches by 6 inches
22) The ratio of the width to the length of a given rectangle is 3 to 4, or 34. If the width is increased by 3 inches and the length is increased by 6 inches, the area of the resulting rectangle is 126 square inches. Find the width and length of the original rectangle.