Skip to main content
Mathematics LibreTexts

6.6: Spherically Symmetric Vibrations

  • Page ID
    90955
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Another application of spherical harmonics is a vibrating spherical membrane, such as a balloon. Just as for the two-dimensional membranes encountered earlier, we let \(u(\theta, \phi, t)\) represent the vibrations of the surface about a fixed radius obeying the wave equation, \(u_{t t}=c^{2} \nabla^{2} u\), and satisfying the initial conditions

    \[u(\theta, \phi, 0)=f(\theta, \phi), \quad u_{t}(\theta, \phi, 0)=g(\theta, \phi) .\nonumber \]

    In spherical coordinates, we have (for \(\rho=r=\) constant.)

    \[u_{t t}=\frac{c^{2}}{r^{2}}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} u}{\partial \phi^{2}}\right),\label{eq:1} \]

    where \(u=u(\theta, \phi, t)\).

    clipboard_e4c98696a0a832a43e4fef1f6f6a488d2.png
    Figure \(\PageIndex{1}\): A vibrating sphere of radius \(r\) with the initial conditions

    \[\begin{aligned} &u(\theta, \phi, 0)=f(\theta, \phi), \\ &u_{t}(\theta, \phi, 0)=g(\theta, \phi) . \end{aligned} \nonumber \]

    The boundary conditions are given by the periodic boundary conditions

    \[u(\theta, 0, t)=u(\theta, 2 \pi, t), \quad u_{\phi}(\theta, 0, t)=u_{\phi}(\theta, 2 \pi, t),\nonumber \]

    where \(0<t\), and \(0<\theta<\pi\), and that \(u=u(\theta, \phi, t)\) should remain bounded.

    Noting that the wave equation takes the form

    \[u_{t t}=\frac{c^{2}}{r^{2}} L u, \quad \text { where } \quad L Y_{\ell m}=-\ell(\ell+1) Y_{\ell m}\nonumber \]

    for the spherical harmonics \(Y_{\ell m}(\theta, \phi)=P_{\ell}^{m}(\cos \theta) e^{i m \phi}\), then we can seek product solutions of the form

    \[u_{\ell m}(\theta, \phi, t)=T(t) Y_{\ell m}(\theta, \phi) .\nonumber \]

    Inserting this form into the wave equation in spherical coordinates, we find

    \[T^{\prime \prime} Y_{\ell m}=-\frac{c^{2}}{r^{2}} T(t) \ell(\ell+1) Y_{\ell m},\nonumber \]

    or

    \[T^{\prime \prime}+\ell(\ell+1) \frac{c^{2}}{r^{2}} T(t)\nonumber \]

    The solutions of this equation are easily found as

    \[T(t)=A \cos \omega_{\ell} t+B \sin \omega_{\ell} t, \quad \omega_{\ell}=\sqrt{\ell(\ell+1)} \frac{c}{r} .\nonumber \]

    Therefore, the product solutions are given by

    \[u_{\ell m}(\theta, \phi, t)=\left[A \cos \omega_{\ell} t+B \sin \omega_{\ell} t\right] Y_{\ell m}(\theta, \phi)\nonumber \]

    for \(\ell=0,1, \ldots, m=-\ell,-\ell+1, \ldots, \ell\).

    clipboard_e851a08ac55d6cfa2ce134d3d6bee5df1.png
    Figure \(\PageIndex{2}\): Modes for a vibrating spherical membrane:

    \[\begin{aligned}\text{Row }1:& (1,0), (1,1); \\ \text{Row }2:& (2,0), (2,1), (2,2); \\ \text{Row }3:& (3,0), (3,1), (3,2), (3,3).\end{aligned} \nonumber \]

    The general solution is found as

    \[u(\theta ,\phi ,t)=\sum\limits_{\ell=0}^\infty\sum\limits_{m=-\ell}^{\ell}[A_{\ell m}\cos\omega_{\ell}t+B_{\ell m}\sin\omega_{\ell}t]Y_{\ell m}(\theta ,\phi ).\nonumber \]

    An interesting problem is to consider hitting the balloon with a velocity impulse while at rest. An example of such a solution is shown in Figure \(\PageIndex{3}\). In this images several modes are excited after the impulse.

    clipboard_ecc7e5bb2f37b79bd45af9afb28bedb63.png
    Figure \(\PageIndex{3}\): A moment captured from a simulation of a spherical membrane after hit with a velocity impulse.

    This page titled 6.6: Spherically Symmetric Vibrations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform.