# 11.2: Two angles of a triangle

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

In this section we will prove a weaker form of Theorem 7.4.1 which holds in any neutral plane.

## Theorem $$\PageIndex{1}$$

Let $$\triangle ABC$$ be a nondegenerate triangle in the neutral plane. Then

$$|\measuredangle CAB| + |\measuredangle ABC| < \pi.$$

Note that according to Theorem 3.3.1, the angles $$ABC, BCA$$, and $$CAB$$ have the same sign. Therefore, in the Euclidean plane the theorem follows immediately from Theorem 7.4.1.

Proof

Let $$X$$ be the reflection of $$C$$ across the midpoint $$M$$ of $$[AB]$$. By Proposition 7.2.1 $$\measuredangle BAX = \measuredangle ABC$$ and therefore

$\measuredangle CAX \equiv \measuredangle CAB + \measuredangle ABC.$

Since $$[BM]$$ and $$[MX]$$ do not intersect $$(CA)$$, the points $$B$$, $$M$$, and $$X$$ lie on the same side of $$(CA)$$. Therefore the angles $$CAB$$ and $$CAX$$ have the same sign. By Theorem 3.3.1, the angles $$CAB, ABC$$ have the same sign; that is all angles in 11.2.1 have the same sign.

Note that $$\measuredangle CAX \not\equiv \pi$$, otherwise $$X$$ would lie on $$(AC)$$. Therefore the identity 11.2.1 implies that

$$|\measuredangle CAB|+|\measuredangle ABC|=|\measuredangle CAX| < \pi.$$

## Exercise $$\PageIndex{1}$$

Assume $$A,B,C$$, and $$D$$ are points in a neutral plane such that

$$2 \cdot \measuredangle ABC + 2 \cdot \measuredangle BCD \equiv 0.$$

Show that $$(AB)\parallel (CD)$$.

Note that one cannot apply the transversal property (Theorem 7.3.1)

Hint

Arguing by contradiction, assume $$2 \cdot (\measuredangle ABC + \measuredangle BCD) \equiv 0$$, but $$(AB) \nparallel (CD)$$. Let $$Z$$ be the point of intersection of $$(AB)$$ and $$(CD)$$.

Note that $$2 \cdot \measuredangle ABC \equiv 2 \cdot \measuredangle ZBC$$, and $$2 \cdot \measuredangle BCD \equiv 2 \cdot \measuredangle BCZ$$.

Apply Proposition $$\PageIndex{1}$$ to $$\triangle ZBC$$ and try to arrive at a contradiction.

## Exercise $$\PageIndex{2}$$

Prove the side-angle-angle congruence condition in the neutral geometry.

In other words, let $$ABC$$ and $$A'B'C'$$ be two triangles in a neutral plane; suppose that $$\triangle A'B'C'$$ is nondegenerate. Show that $$\triangle ABC \cong \triangle A'B'C'$$ if

$$AB = A'B'$$, $$\measuredangle ABC = \pm \measuredangle A'B'C'$$ and $$\measuredangle BCA = \pm \measuredangle B'C'A'.$$

Hint

Let $$C'' \in [B'C')$$ be the point such that $$B'C'' = BC$$.

Note that by SAS, $$\triangle ABC \cong \triangle A'B'C''$$. Conclude that $$\measuredangle B'C'A' = \measuredangle B'C''A'$$.

Therefore, it is sufficient to show that $$C'' = C'$$. If $$C' \ne C''$$ apply Proposition $$\PageIndex{1}$$ to $$\triangle A'C'C''$$ and try to arrive at a contradiction.

Note that in the Euclidean plane, the above exercise follows from ASA and the theorem on the sum of angles of a triangle (Theorem 7.4.1). However, Theorem 7.4.1 cannot be used here, since its proof uses Axiom V. Later (Theorem 13.1.1) we will show that Theorem 7.4.1 does not hold in a neutral plane.

## Exercise $$\PageIndex{3}$$

Assume that the point $$D$$ lies between the vertices $$A$$ and $$B$$ of $$\triangle ABC$$ in a neutral plane. Show that

$$CD < CA$$ or $$CD < CB$$.

Hint

Use Exercise 5.2.2 and Proposition $$\PageIndex{1}$$.

Alternatively, use the same argument as in the solution of Exercise 5.6.1.

This page titled 11.2: Two angles of a triangle is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Anton Petrunin via source content that was edited to the style and standards of the LibreTexts platform.