# 17.4: D - Notation

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

The following table defines the notation used in this book. Page numbers or references refer to the first appearance of each symbol.

Symbol Description Location
$$x\in A$$ $$x$$ is an element of $$A$$ Paragraph
$$x\notin A$$ $$x$$ is not an element of $$A$$ Paragraph
$$\mathbb{P}$$ the positive integers Item
$$\mathbb{N}$$ the natural numbers Item
$$\mathbb{Z}$$ the integers Item
$$\mathbb{Q}$$ the rational numbers Item
$$\mathbb{R}$$ the real numbers Item
$$\mathbb{C}$$ the complex numbers Item
$$|A|$$ The number of elements in a finite set $$A$$. Definition 1.1.2
$$A\subseteq B$$ $$A$$ is a subset of $$B$$. Definition 1.1.3
$$\emptyset$$ the empty set Paragraph
$$A \cap B$$ The intersection of $$A$$ and $$B$$. Definition 1.2.1
$$A \cup B$$ The union of $$A$$ and $$B$$. Definition 1.2.3
$$B-A$$ The complement of $$A$$ relative to $$B$$ Definition 1.2.5
$$A^c$$ The complement of set $$A$$ relative to the universe. Definition 1.2.5
$$A\oplus B$$ The symmetric difference of $$A$$ and $$B$$. Definition 1.2.6
$$A\times B$$ The cartesian product of $$A$$ with $$B$$. Definition 1.3.1
$$\mathcal{P}(A)$$ The power set of $$A$$, the set of all subsets of $$A$$. Definition 1.3.2
$$n!$$ $$n$$ factorial, the product of the first $$n$$ positive integers Definition 2.2.1
$$\binom{n}{k}$$ $$n$$ choose $$k$$, the number of $$k$$ element subsets of an $$n$$ element set. Definition 2.4.1
$$p \land q$$ the conjunction, $$p$$ and $$q$$ Definition 3.1.2
$$p \lor q$$ the disjunction, $$p$$ or $$q$$ Definition 3.1.3
$$\neg p$$ the negation of $$p$$, "not $$p$$" Definition 3.1.4
$$p \to q$$ The conditional proposition If $$p$$ then $$q$$. Definition 3.1.5
$$p \leftrightarrow q$$ The biconditional proposition $$p$$ if and only if $$q$$ Definition 3.1.8
$$1$$ symbol for a tautology Definition 3.3.1
$$0$$ symbol for a contradiction Definition 3.3.2
$$r \iff s$$ $$r$$ is logically equivalent to $$s$$ Definition 3.3.3
$$r \Rightarrow s$$ $$r$$ implies $$s$$ Definition 3.3.4
$$p|q$$ the Sheffer Stroke of $$p$$ and $$q$$ Definition 3.3.5
$$T_p$$ the truth set of $$p$$ Definition 3.6.2
$$(\exists n)_U(p(n))$$ The statement that $$p(n)$$ is true for at least one value of $$n$$ Definition 3.8.1
$$(\forall n)_U(p(n))$$ The statement that $$p(n)$$ is always true. Definition 3.8.2
$$\pmb{0}_{m\times n}$$ the $$m$$ by $$n$$ zero matrix Item
$$I_n$$ The $$n\times n$$ identity matrix Definition 5.2.2
$$A^{-1}$$ $$A$$ inverse, the multiplicative inverse of $$A$$ Definition 5.2.3
$$\det\: A$$ or $$|A|$$ The determinant of $$A$$, 2 by 2 case Definition 5.2.4
$$a|b$$ $$a$$ divides $$b$$, or $$a$$ divides evenly into $$b$$ Definition 6.1.3
$$xsy$$ $$x$$ is related to $$y$$ through the relation $$s$$ Paragraph
$$rs$$ the composition of relation $$r$$ with relation $$s$$ Definition 6.1.4
$$a \equiv_n b$$ $$a$$ is congruent to $$b$$ modulo $$n$$ Definition 6.3.7
$$a \equiv b (\textrm{mod } n)$$ $$a$$ is congruent to $$b$$ modulo $$n$$ Definition 6.3.7
$$c(a)$$ the equivalence class of $$a$$ under $$r$$ Item
$$r^+$$ The transitive closure of $$r$$ Definition 6.5.1
$$f:A \rightarrow B$$ A function, $$f$$, from $$A$$ into $$B$$ Definition 7.1.1
$$B^A$$ The set of all functions from $$A$$ into $$B$$ Definition 7.1.2
$$f(a)$$ The image of $$a$$ under $$f$$ Definition 7.1.3
$$f(X)$$ Range of function $$f:X \rightarrow Y$$ Definition 7.1.4
$$\mathcal{X}s$$ Characteristic function of the set $$S$$ Exercise 7.1.4
$$|A|=n$$ $$A$$ has cardinality $$n$$ Definition 7.2.4
$$(g \circ f)(x) = g(f(x))$$ The composition of $$g$$ with $$f$$ Definition 7.3.2
$$f \circ f = f^2$$ the "square" of a function. Definition 7.3.3
$$i$$ or $$i_A$$ The identity function (on a set $$A$$) Definition 7.3.4
$$f^{-1}$$ The inverse of function $$f$$ read "$$f$$ inverse" Definition 7.3.5
$$log_b a$$ Logarithm, base $$b$$ of $$a$$ Definition 8.4.2
$$S\uparrow$$ $$S$$ pop Definition 8.5.2
$$S\downarrow$$ $$S$$ push Definition 8.5.2
$$S*T$$ Convolution of sequences $$S$$ and $$T$$ Definition 8.5.2
$$S\uparrow p$$ Multiple pop operation on $$S$$ Definition 8.5.3
$$S\downarrow p$$ Multiple push operation on $$S$$ Definition 8.5.3
$$K_n$$ A complete undirected graph with $$n$$ vertices Definition 9.1.4
$$deg(v), indeg(v), outdeg(v)$$ degree, indegree, and outdegree of vertex $$v$$ Definition 9.1.9
$$e(v)$$ The eccentricity of a vertex Definition 9.3.1
$$d(G)$$ The diameter of graph $$G$$ Definition 9.3.2
$$r(G)$$ The radius of graph $$G$$ Definition 9.3.3
$$C(G)$$ The center of graph $$G$$ Definition 9.3.4
$$Q_n$$ the $$n$$-cube Definition 9.4.3
$$V(f)$$ The value of flow $$f$$ Definition 9.5.3
$$P_n$$ a path graph of length $$n$$ Definition 9.6.2
$$\chi(G)$$ the chromatic number of $$G$$ Definition 9.6.3
$$C_n$$ A cycle with $$n$$ edges. Definition 10.1.1
$$*$$ generic symbol for a binary operation Definition 11.1.1
$$string1 + string2$$ The concatenation of $$string1$$ and $$string2$$ Item
$$[G;*]$$ a group with elements $$G$$ and binary operation $$*$$ Definition 11.2.1
$$\gcd(a,b)$$ the greatest common divisor of $$a$$ and $$b$$ Definition 11.4.1
$$a +_n b$$ the mod $$n$$ sum of $$a$$ and $$b$$ Definition 11.4.3
$$a \times_n b$$ the mod $$n$$ product of $$a$$ and $$b$$ Definition 11.4.4
$$\mathbb{Z}_n$$ The Additive Group of Integer Modulo $$n$$ Definition 11.4.5
$$\mathbb{U}_n$$ The Multiplicative Group of Integer Modulo $$n$$ Definition 11.4.6
$$W\leq V$$ $$W$$ is a subsystem of $$V$$ Definition 11.5.1
$$\langle a \rangle$$ the cyclic subgroup generated by $$a$$ Definition 11.5.2
$$ord(a)$$ Order of a Definition 11.5.3
$$V_1\times V_2 \times \cdots \times V_n$$ The direct product of algebraic structures $$V_1, V_2, \dots , V_n$$ Definition 11.6.1
$$G_1 \cong G_2$$ $$G_1$$ is isomorphic to $$G_2$$ Definition 11.7.2
$$dim(V)$$ The dimension of vector space $$V$$ Definition 12.3.6
$$\pmb{0}$$ least element in a poset Definition 13.1.5
$$\pmb{1}$$ greatest element in a poset Definition 13.1.5
$$D_n$$ the set of divisors of integer $$n$$ Definition 13.1.6
$$a \lor b$$ the join, or least upper bound of $$a$$ and $$b$$ Definition 13.2.1
$$a \land b$$ the meet, or greatest lower bound of $$a$$ and $$b$$ Definition 13.2.1
$$[L;\lor,\land]$$ A lattice with domain having meet and join operations Definition 13.2.2
$$\bar{a}$$ The complement of lattice element $$a$$ Definition 13.3.4
$$[B; \lor , \land, \bar{\hspace{5 mm}}]$$ a boolean algebra with operations join, meet and complementation Definition 13.3.5
$$M_{\delta_1 \delta_2 \cdots \delta_k}$$ the minterm generated by $$x_1, x_2, \ldots , x_k\text{,}$$ where $$y_i=x_i$$ if $$\delta_i = 1$$ and $$y_i=\bar{x_i}$$ if $$\delta_i = 0$$ Definition 13.6.2
$$A^*$$ The set of all strings over an alphabet $$A$$ Definition 14.2.1
$$A^n$$ The set of all strings of length $$n$$ over an alphabet $$A$$ Definition 14.2.1
$$\lambda$$ The empty string Definition 14.2.1
$$s_1+s_2$$ The concatenation of strings $$s_1$$ and $$s_2$$ Definition 14.2.2
$$L(G)$$ Language created by phrase structure grammar $$G$$ Definition 14.2.5
$$(S, X, Z, w, t)$$ A finite-state machine with states $$S$$, input alphabet $$X$$, output alphabet $$X$$, and output function $$w$$ and next-state function $$t$$ Definition 14.3.1
$$m(M)$$ The machine of monoid $$M$$ Definition 14.5.1
$$a*H, H*a$$ the left and right cosets generated by $$a$$ Definition 15.2.1
$$G/H$$ The factor group $$G$$ mod $$H$$. Definition 15.2.4
$$S_A$$ The group of permutations of the set $$A$$ Definition 15.3.1
$$S_n$$ The group of permutations on a set with $$n$$ elements Definition 15.3.1
$$A_n$$ The Alternating Group Definition 15.3.3
$$\mathcal{D}_n$$ The $$n$$th dihedral group Definition 15.3.4
$$H \triangleleft G$$ $$H$$ is a normal subgroup of $$G$$ Definition 15.4.1
$$ker\theta$$ the kernel of homomorphism $$\theta$$ Definition 15.4.4
$$[R; +, \cdot]$$ a ring with domain $$R$$ and operations $$+$$ and $$\cdot$$. Definition 16.1.1
$$U(R)$$ the set of units of a ring $$R$$ Definition 16.1.4
$$D$$ a generic integral domain Definition 16.1.7
$$\textrm{deg }f(x)$$ the degree of polynomial $$f(x)$$ Definition 16.3.1
$$R[x]$$ the set of all polynomials in $$x$$ over $$R$$ Definition 16.3.1
$$R\left[\left[x\right]\right]$$ the set of all power series in $$R$$ Definition 16.5.1
$$\grave x, \acute x$$ pre and post values of a variable $$x$$ Definition 17.1.2.1
$$M(A)_{i,j}$$ The $$i$$, $$j$$ minor of $$A$$ Definition 17.3.1.2
$$C(A)_{i,j}$$ The $$i$$, $$j$$ cofactor of $$A$$ Definition 17.3.1.3
$$\det(A)$$ or $$\lvert A \rvert$$ The determinant of $$A$$ Definition 17.3.1.4

This page titled 17.4: D - Notation is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Al Doerr & Ken Levasseur via source content that was edited to the style and standards of the LibreTexts platform.